MODULE - METHODES POTENTIELLES Contenu du cours (par J.B. Edel & P. Sailhac) : I. Propriétés physiques des roches : densités, aimantations induites et aimantations rémanentes. II. Champs de potentiel (gravimétrique, magnétique, …) III. Etablissement de profils et cartes d'anomalies gravimétriques et magnétiques : les mesures, les corrections des données, ... IV. Calculs de l’effet de structures simples : sphère, cylindre, filon, faille et prisme quelconque à deux dimensions. V. Quelques méthodes d'interprétation et de transformations rapides des anomalies (prolongement, dérivation, réduction au pôle), qui permettent d'affiner la localisation des structures et d'en délimiter les contours. VI. Levé magnétique en Alsace : Interprétations géologiques.
V. Quelques méthodes d'interprétation et de transformations rapides des anomalies V.1 Problématique du prolongement, de la dérivation et de la réduction des champs de potentiel V.2 Rappels sur le domaine de Fourier à 1 et 2 variables V.3 Opérateurs de prolongement et de dérivation V.4 Réduction au pôle et à l’équateur, et signaux analytiques V.5 Transformation en couche équivalente
Cas d’étude : Calculs du profil d’une ligne de dipôles (sources 2D) z x X=0 y ici Fonction paire Fonction impaire
Cas d’étude : Calculs du profil d’une ligne de dipôles (sources 2D) z x X=0 y ici Fonction paire Fonction impaire Fonction paire Fonction impaire Cf. I’=90° (pôle) et I’=0° (équateur) Cf. I’=45°
Cas d’étude : Calculs du profil d’une ligne de dipôles (sources 2D) z x X=0 y Signaux analytique de profils magnétiques Fonction paire Fonction impaire (…) Le module du signal analytique d’une ligne de dipôles est paire
Calculs dans le domaine de Fourier des signaux analytiques de profils : Réduction au pôle via signaux analytiques Images dans le domaine de Fourier TF TF TF TF Après TF-1, il reste encore à prendre la partie réelle :
Calculs dans le domaine de Fourier des signaux analytiques de profils : Réduction au pôle via signaux analytiques Signaux analytiques d’ordre 1 (dérivée première) Image dans le domaine de Fourier TF TF TF TF Dérivée en x Dérivée en z
Calculs dans le domaine de Fourier des signaux analytiques de profils : Représenter les opérateurs TA0 et TA1 ci-dessous dans le domaine de Fourier
Calculs dans le domaine de Fourier de la réduction au pôle de profils : Rappel du principe via l’anomalie d’une source ponctuelle TF où Réduction au pôle = Passage de quelconque à Expression de la réduction au pôle Dérivée seconde en z Intégrations en m0 et en f0
Calculs dans le domaine de Fourier de la réduction au pôle de profils : Réduction au pôle = Passage de quelconque à Expression de la réduction au pôle