CERCLES DE FORD ARBRE DE STERN-BROCOT SUITES DE FAREY CERCLES DE FORD ARBRE DE STERN-BROCOT
CHRONOLOGIE John Farey, géologue anglais, conjecture en 1816, sur les fractions ordinaires Démonstration la meme année par Augustin Cauchy Magnifique illustration géométrique en 1938 par Lester Ford (mathématicien américain) Représentation des rationnels par un arbre infini : indépendamment par le mathématicien allemand Moriz Stern (1858) et l’horloger français Achille Brocot (1860)
DEFINITION Ce sont toutes les fractions irréductibles Entre 0 et 1 ayant un dénominateur inférieur ou égal à n et classées par ordre croissant
sont deux termes CONSECUTIFS INSERTION Si a / b et a' / b' sont deux termes CONSECUTIFS d'une suite de Farey alors ba' - ab' = 1 Dans la suite de Farey, en prenant trois fractions consécutives : p/q < p’/q’ < p’’/q’’ le terme médian est donné par:
Cercles de Ford (fractal)
Tangence des cercles
d : distance en rouge t = r + R d² = ( X - x )² + ( Y - y )² t = y + Y d² = X² - 2Xx + x² + Y² - 2Yy + y² t² = y² + 2 yY + Y² d² - t² = ( X - x )² - 4Yy = ( P/Q - p/q )² - 4 (1/2Q² . 1/2q² ) = ( (Pq - pQ)/qQ )² - (1/qQ )² = ( ( Pq - pQ )² - 1 ) /q²Q²
POINTS DE TANGENCE
EN DIMENSION 3
ARBRE DE STERN-BROCOT ARBRE DE STERN-BROCOT Fait extraordinaire : tous les rationnels figurent dans l’arbre, une et une seule fois, et sous forme irréductible Ensembles de Farey : sous-arbres Chaque rationnel y apparaît une seule fois, en écriture irréductible
GENERATIONS 0/1 < 1/0 0/1 < 1/1 < 1/0 0/1 < 1/2 <1/1 < 2/1 < 1/0 0/1 <1/3< 1/2 <2/3<1/1<3/2 < 2/1<3/1 < 1/ 0 0/1 <1/4<1/3<2/5< 1/2<3/5 <2/3<3/4<1/1<4/3<3/2 <5/3< 2/1<5/2<<3/1 < 4/1<1/0 0/1<1/5< <1/4<2/7<<1/3<3/8<2/5<3/7< 1/2<4/7<3/5 <5/8<<2/3<5/7<3/4<4/5<1/1 2/3<7/10<5/7<8/11<3/4< 7/9<4/5<5/6<1/1 2/3< 9/13<7/10<12/17<5/7<13/18<8/11<11/15<3/4< 10/13<7/9<11/14<4/5<9/11<5/6< 6/7<1/1 3/4<13/17< 10/13< 17/22<7/9<18/23<11/14<15/19<4/5 3/4<16/21<13/17<23/30< 10/13<27/35< 17/22<24/31<7/9<25/32<18/23<29/37<11/14 27/35 : 1/1 - 1/2 - 2/3 - 3/4 - 4/5 - 7/9 – 10/13 – 17/22 – 27/35
PROPRIETES 1)Si m/n < m’/n’ sont consécutives dans l’arbre (i.e. dans une génération) alors m’n –mn’ = 1 (*) Preuve par récurrence : on vérifie que pour le nouvel élément (m+m’)(/n+n’), on a encore (cf déterminants liés) : (m+m’)n – m(n+n’) =1 = m’(n+n’)-(m+m’)n’ 2)Conséquence : fractions irréductibles (Bezout) 3)Si m/n < m’/n’ alors m/n < (m+m’)(/n+n’) < m’/n’ : la construction de l’arbre préserve l’ordre donc chaque fraction apparaît au plus une fois 4)Chaque fraction est présente dans l’arbre : tant que a/b n’est pas apparue, on considère ses 2 plus proches voisins m/n < m’/n’ vérifiant donc (*) Puisque m/n < a/b < m’/n’ , on a : an-bm > 0 et m’b –an’ > 0 soit encore puisqu’ils sont entiers an-bm ³ 1 et m’b –an’ ³ 1; De (*), on déduit : a+b = (m’+n’) (an-bm) + (m+n) (m’b –an’ ) ³ m+n + m’+n’ , Ce qui ne sera plus vrai à partir d’un certain rang puisque m+n + m’+n’ Croit strictement au fil des générations.
CODAGE Prenons par exemple 27/35, selon ce principe, elle se code sous la forme GDDDGGDG (G pour gauche et D pour droite). Or on peut vérifier que 1' on a :
Ensemble de MANDELBROT
Ampoule de période 3
Ampoule de période 9
Ampoules 2/5 et 3/7
ADDITION DE FAREY