INF-1019 Programmation en temps réel

Slides:



Advertisements
Présentations similaires
Traitement d’images : concepts fondamentaux
Advertisements

Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Cours 4 : Restauration et filtrage d’image

Traitement d’images : briques de base S. Le Hégarat
Introduction à limagerie numérique Acquisition, Caractéristiques, Espaces couleurs, Résolution.
Filtrage d’image Cours 7
INF-1019 Programmation en temps réel
Prétraitement de l’image
Analyse fréquentielle
Filtrage-Analyse Spectrale des Images
Analyse d’images Détection de contour Cours 8
Analyse fréquentielle
Le filtrage d’images.
TRAITEMENT D’IMAGE SIF-1033.
Chapitre 2 : Filtrage Professeur. Mohammed Talibi Alaoui
SUJETS SPÉCIAUX EN INFORMATIQUE I
Cours #6 Filtrage Découverte Plan du cours
N Découverte n Présentation des équipes et des projets n 3- Extraction des caractéristiques u 3.1 Caractéristiques 3D et 2D u 3.2 Arêtes u 3.3 Gradient.
Projet Traitement d'images en C
TRAITEMENT D’IMAGE SIF-1033.
TRAITEMENT D’IMAGE SIF-1033.
TRAITEMENT D’IMAGE SIF-1033.
TRAITEMENT D’IMAGE SIF-1033.
PIF-6003 Sujets spéciaux en informatique I
TRAITEMENT D’IMAGE SIF-1033.
SIF-1033 Traitement d’image
TRAITEMENT D’IMAGE SIF-1033.
SUJETS SPÉCIAUX EN INFORMATIQUE I
MAP-6014 Concepts avancés en mathématiques et informatique appliquées
Le filtrage d’images.
TRAITEMENT D’IMAGE SIF-1033.
TRAITEMENT D’IMAGE SIF-1033.
MAP-6014 Concepts avancés en mathématiques et informatique appliquées
 Classe qui hérite de Qimage  Ajout de méthode d’accès rapide aux pixels et aux composantes  Ajout des composantes Y, U et V  Ajout de méthode pour.
TRAITEMENT D’IMAGE SIF-1033.
SIF-1033 Traitement d’image
SIF-1033 Traitement d’image
Détection de contours automatique et application aux images réelles
INF-1019 Programmation en temps réel
Module 4: Le filtrage d’images. Objectifs du filtrage.
Traitement d’images Prétraitements.
Le contrôle de soudures laser par radiographie X
Traitement de base d'une image (partie 1)
TRAITEMENT D’IMAGE SIF-1033 Segmentation des images par détection de contours et d’arêtes u Détection des contours et arêtes u Dérivée première (gradient)
INF-1019 Programmation en temps réel
Semaine 06 vA14 Modèle colorimétrique Détection de contours
Introduction au Traitement d’image
SUJETS SPÉCIAUX EN INFORMATIQUE 1
MAP-6014 Concepts avancés en mathématiques et informatique appliquées
INF-1019 Programmation en temps réel
SIF1033 TRAITEMENT D’IMAGE
Concepts avancés en mathématiques et informatique appliquées MAP-6014.
Mathématiques pour Informaticien I
Suivi d’Horizons Sismiques
Traitement d’images 420-D78-SW A15 Semaine 02.
Partie II : Segmentation
PIF-6003 Sujets spéciaux en informatique I
Traitement du signal (images) u Sujets –Détection des droites –Transformée de Hough (espace paramétré) *avec la pente et l’ordonnée à l’origine *avec.
Photoshop CS4 Partie 2 Ahmed CHAWKI Peng ZHAO SI28 Automne 09.
SSII, séance n°13, bilan du cours 15 décembre 2015 Dernière séance 2015 Résumé des chapitres et notions abordées en 2015.
Filtrage des images.
Détection de coutours - Exemples élémentaires -
SIF-1033 Traitement d’image
TRAITEMENT D’IMAGE SIF-1033.
Concepts avancés en mathématiques et informatique appliquées
Transcription de la présentation:

INF-1019 Programmation en temps réel Traitement du signal (images) Sujets Filtrage spatial Lissage d’images (élimination du bruit) Rehaussement d’images (mise en évidence de structures dans l’image) Lectures: Note de cours

Filtrage spatial Fondements Caractéristiques des images obtenues par filtrage spatial Types (3) de base du filtrage spatial Transformation basée sur le voisinage d’un point (x,y) Transformation par convolution

Caractéristiques des images obtenues par filtrage spatial - = Lissage (filtre passe-bas) Rehaussement (filtre passe-haut) FIGURE 2.11 [rf. SCHOWENGERDT, p. 74]

Types (3) de base du filtrage spatial Passe-bas Passe-haut Passe-bande Figure 4.19 [rf. GONZALEZ, p. 190]

Transformation basée sur le voisinage d’un point (x ,y) Image originale Image traitée FIGURE 1.8 [rf. SCHOWENGERDT, p. 17]

Transformation par convolution Point Spread Function OU résultat d ivisé par la somme des poids [wx] du filtre (P-B) ou son nombre de pixels (P-H) filtre normalisé 1 1/9 w3 w9 w2 w8 w1 w7 w6 w5 w4 DF ou Dimension Filtre : 3 ü ï ý þ 1/9 X (1-22) [rf. SCHOWENGERDT, p. 32]

Lissage d’images (élimination du bruit) Filtre de moyenne (passe-bas) Filtre gaussien (passe-bas) Filtre médian

Filtre de moyenne (passe-bas) Lissage transition tranusition 00 FF (flou apparent) 1 N.B. plus le filtre grossit , plus le lissage devient important et plus le flou s’accentue ! 1/25 X

Filtre gaussien (passe-bas) fonction gaussienne 2-D w3 w9 w2 w8 w1 w7 w6 w5 w4 Dim X = DimY = 8s + 1 où s Î ü ï ý þ

Filtre médian (d) filtre médian 5x5 N.B. C[ j] ³ 0,5 (a) image originale (b) image bruitée (c) filtre de moyenne 5x5 (d) filtre médian 5x5 au lieu de la moyenne du f iltre par voisinage, on utilise la méd iane (d’où son nom) si le bruit ajouté à l’image est supérieur à la dimension du filtre, celui-ci est inefficace ! N.B. C[ j] ³ 0,5 où j est la médiane Figure 4.23 [rf. GONZALEZ, p. 194]

Rehaussement d’images (mise en évidence de structures dans l’image) Filtre passe-haut Opérations sur les filtres de voisinage Filtres différentiels Basés sur le gradient Filtres de Prewitt et Sobel Amélioration des arêtes et des contours

FIGURE 2.12 [rf. SCHOWENGERDT, p. 76-77] Filtre passe-haut - = [K=1] Passe-bas Passe-haut 1 1 -1 48 -1 24 1 X -1 8 X PSF > FIGURE 2.12 [rf. SCHOWENGERDT, p. 76-77]

Opérations sur les filtres de voisinage (a) passe-bas ü ï ý þ ì í î 1 2 3 1 1 = + + 1 (b) passe-haut ü ï ý þ ì í î -1 24 1 = - + 25 FIGURE 2.16 [rf. SCHOWENGERDT, p. 82]

Filtres différentiels Image prof il d’une ligne horizontale (dérivée première) (dérivée seconde) (a) ( b) Figure 7.4 [rf. GONZALEZ, p. 417]

Filtres différentiels basés sur le gradient vecteur magnitude q direction (4.3-5-6) [rf. GONZALEZ, p. 198-199]

Filtres de Prewitt et Sobel (a) -1 1 (b) Roberts -1 1 (c) Prewitt -1 1 -2 2 (d) Sobel cross-gradient operators operators z3 z9 z2 z8 z7 z6 z5 z4 z1 où zx : valeur du n iveau de gris Figure 4.28 [rf. GONZALEZ, p. 200]

Amélioration des arêtes et des contours (a) image originale (b) image obtenue à partir des valeurs de magnitude du gradient [‘masques’ de Prewitt] (c) image originale dont les pixels ayant 1 gradient > 25* ont été mis à 255 (d) idem à c [sauf pour les pixels dont les 2 gradients £ 25* qui ont été mis à 0 - image binaire] Figure 4.29 [rf. GONZALEZ, p. 201]

Résumé Amélioration des images par filtrage spatial Lissage d’images (élimination du bruit) Rehaussement d’images (mise en évidence de structures dans l’image)