Quelques filtres lisseurs de base (I)

Slides:



Advertisements
Présentations similaires
Introduction à l’analyse
Advertisements

DEA Réalité Virtuelle et Maîtrise des Systèmes Complexes
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts avancés
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts fondamentaux
Classification et prédiction
Classification et prédiction
Introduction au cours “Modèles stochastiques en traitement d’image”
Champs de Markov en Vision par Ordinateur
Champs de Markov en Vision par Ordinateur
Champs de Markov en Vision par Ordinateur
RECONNAISSANCE DE FORMES
compensation de défaut : flou, bougé, écho
6. Quantification des signaux visuels. Codage prédictif (MICD)
3. Analyse et estimation du mouvement dans la vidéo

Application des algorithmes génétiques
RECONNAISSANCE DE FORMES
Classification Multi Source En Intégrant La Texture
Analyse d’images Détection de contour Cours 8
Applications du perceptron multicouche
Décodage des informations
Le filtrage d’images.
TRAITEMENT D’IMAGE SIF-1033.
Méthode des k plus proches voisins
Traitement d’images : concepts avancés
Chapitre 3 : Détection des contours
III – Convergence Asymptotique
Construction de modèles visuels
La segmentation
DEA Perception et Traitement de l’Information
Traitement d’images : concepts fondamentaux
Traitement d’images : concepts avancés
II- L’algorithme du recuit simulé (pseudo-code)
Cours #6 Filtrage Découverte Plan du cours
Représentation des systèmes dynamiques dans l’espace d’état
Représentation des systèmes dynamiques dans l’espace d’état
N Découverte n Présentation des équipes et des projets n 3- Extraction des caractéristiques u 3.1 Caractéristiques 3D et 2D u 3.2 Arêtes u 3.3 Gradient.
Chapitre 4 : Morphologie Mathématique
Mise en oeuvre des MMCs L'utilisation des MMCs en reconnaissance des formes s'effectue en trois étapes : définition de la topologie de la chaîne de Markov,
Le filtrage d’images.
Serrure biométrique Reconnaissance dempreintes digitales Raphaël FROMONT – Pascal GRIMAUD – Nicolas MUNOZ Tuteur : M. Patrick ISOARDI.
Programmation dynamique
Filtrage de Kalman et aperçu probabiliste
Apprentissage par arbre de décision
MAP-6014 Concepts avancés en mathématiques et informatique appliquées
Modélisation géométrique de base
Détection de contours automatique et application aux images réelles
Projet Télédétection Vidéo Surveillance Deovan Thipphavanh – Mokrani Abdeslam – Naoui Saïd Master 2 Pro SIS / 2006.
Classification (approches globales)
Module 4: Le filtrage d’images. Objectifs du filtrage.
Classification : objectifs
STATISTIQUES – PROBABILITÉS
SEGMENTATION EN REGIONS
Modèles Mathématiques et représentation discrètes pour la description des images couleur Luc Brun.
Morphologie mathématique (cas fonctionnel)
Recherches locales et méta-heuristiques
TNS et Analyse Spectrale
MAP-6014 Concepts avancés en mathématiques et informatique appliquées
INF-1019 Programmation en temps réel
Méthode des moindres carrés (1)
Suivi d’Horizons Sismiques
Partie II : Segmentation
PIF-6003 Sujets spéciaux en informatique I
PROGRAMMATION SCIENTIFIQUE EN C
Filtrage des images.
Transcription de la présentation:

Quelques filtres lisseurs de base (I) Cas d’images bruitées (e.g. gaussien, impulsionnel)  prétraitement : ‘lissage’ Filtrage linéaire Moyennage exemples Linéaire gaussien, paramètre s e.g. s=1.0, s=1.6 Bruit gaussien s=30 Filtre moyenne 33 Filtre Gaussien s=1.0

Quelques filtres lisseurs de base (II) Filtrage non linéaire De Nagao SNN (Symetric Nearest Neighbor) Filtrage d’ordre Médian (p pixels, p≤|Vs|) Algorithme : 1) Calcul de l’histogramme sur le voisinage Vs 2) Tri des valeurs du voisinage 3) Sélection E le plus compact |E|=p 4) Sélection de la valeur de E à l’ordre considéré Bruit gaussien s=30 Filtre de Nagao Filtre médian 33

Image S15.ppt.zip

‘S&P’ 10%  filtre médian 7x7 s=20 + ‘S&P’ 10%  filtre Nagao Image non bruitée Gaus. s=20  filtre gaus. s=2.5 Bruit gaussien s=20 ‘S&P’ 10%  filtre médian 7x7 s=20 + ‘S&P’ 10%  filtre Nagao

Filtrage : exercices Que font les filtres à noyau de convolution suivants (prenez un exemple numérique si nécessaire) Quelle est la condition sur les coefficients pour que le filtrage soit passe-bas Décomposer le filtre 2D de noyau sous forme du produit de convolution de 2 filtres 1D En déduire un moyen efficace, en nombre d’opérations par pixel, d’implémenter les filtres précédents

Détection de contours : approche générale Objectif Méthodes dérivatives Utilisation du gradient Calcul de l’image du gradient Calcul de l’image de la norme du gradient Calcul de l’image de la direction du gradient Seuillage (avec hystérésis) de l’image de la norme du gradient Elimination des non maxima locaux dans la direction du gradient Fermeture des contours Utilisation du laplacien Calcul de l’image du laplacien Calcul de l’image de la norme du gradient Calcul de l’image binaire Iz des passages par zéro du laplacien Application du masque binaire Iz à l’image de la norme du gradient Seuillage (avec hystérésis) de l’image de la norme du gradient |Iz Elimination des non maxima locaux dans la direction du gradient Fermeture des contours

, par filtrage linéaire passe-haut Gradient Sobel c=2 Prewitt c=1 Opérateur MDIF Laplacien 4-connexité 8-connexité

et morphologiques Dilatation / érosion de fonctions Cas particulier g(x)=0 xRnD Propriétés Croissance par rapport à f, Extensivité / anti-extensivité (si origine incluse dans support de g), Croissance / décroissance par rapport à g, Commutations. Opérateurs ‘différence d’opérateurs’ Gradient intérieur, grad. extérieur Gradient morphologique Laplacien morphologique Convergence vers gradient et laplacien euclidiens si élément structurant = boule eucl. centrée et rayon  0

par filtrage optimal (I) Critères de Canny (i) Bonne détection, (ii) bonne localisation, (iii) faible multiplicité des maxima dus au bruit  Filtre impulsionnel à réponse finie (RIF) Filtre de Deriche : RII  Dérivée directionnelle en x = Image*h(x)*f(y) Dérivée directionnelle en y = Image*h(y)*f(x) Filtre de Shen - Castan Filtre de lissage puis application d’un opérateur différentiel

par filtrage optimal (II) Implantation du filtre de dérivation de Deriche Décomposition entre 1 partie causale et 1 anti-causale R1[i]=c.e-a.I[i-1]+2.e-a.R[i-1]-e-2a.R[i-2] R2[i]=-c.e-a.I[i+1]+2.e-a.R[i+1]-e-2a.R[i+2] R[i]=R1[i]+ R2[i] Implantation du filtre de lissage de Deriche R1[i]= b.I[i]+ b.e-a.(a-1).I[i-1]+2.e-a.R[i-1]-e-2a.R[i-2] R2[i]= b.e-a.(a+1).I[i+1]-b.e-2a.I[i+2]+2.e-a.R[i+1]-e-2a.R[i+2]

Exemples de et . B1 B2 || MM (B1) || MM (B2) || Prewitt || Sobel || MDIF D masque D MM (B1) D MM (B2) Deriche a=1 Deriche a=2 Deriche a=3 Shen b=0.5 Shen b=1

Détection de contours Seuillage avec hystérésis Détection des pixels de valeur ≥ sh Ajout des pixels de valeur ≥ sb et qui  1 composante connexe ayant au moins 1 pixel de valeur ≥ sh (utilisat° d’1 pile pour créer les composantes connexes) Détection des maxima locaux de la norme du gradient dans la direction du gradient q Autres cas : (i,j-1) (i,j) (i,j+1) (i+1,j-1) (i-1,j+1)

Fermeture de contours Construction d’1 « look-up table » permettant d’indexer les pixels candidats à la fermeture pour chaque configuration. Codage configuration : où xi=1 si contour, 0 sinon Ex. T[16]=1 ; T[136]=1 ; T[8]=1 Algorithme de fermeture : Pour chaque extrémité trouvée lors du balayage de l’image : Construction du sous-arbre de tous les chemins possibles de longueur p et du coût associé à chaque nœud : somme des normes des gradients en chaque point du chemin Sélection du nœud de coût maximum Prolongation du contour 1 2 3 4 7 6 5 1 2 3 4 7 6 5 1 2 3 4 7 6 5

Après fermeture de contours Exemple D masque Prewitt Sobel MDIF Après fermeture de contours Deriche a=1 Deriche a=2 Deriche a=3 Shen b=0.5 Shen b=1

Contours : exercices (I) Pour la norme du gradient, on utilise l’une des trois normes suivantes : Comparer les valeurs obtenues par N1, N2 et N3 si l’on calcule le gradient discret avec D2x=[-1 0 1] et D2y=t[-1 0 1] Même question si le gradient discret est obtenu l’application du filtre de Sobel En déduire que N3 est la norme la mieux adaptée dans le premier cas, et N1 ou N2 dans le deuxième cas. Ecrire les équations aux différences pour les 3 masques utilisés pour estimer le laplacien discret :

Contours : exercices (II) Calculer le gradient et le laplacien morphologique dans les cas d’images suivants : Interpréter et commenter Effectuer un seuillage avec hystérésis sur : Donner les formules d’interpolation des gradients en M1 et M2 pour la détection des maxima locaux de la norme du gradient dans la direction du gradient q, pour les différents cas de q

Classification : objectifs Mettre en évidence les similarités/ dissimilarités entre les ‘objets’ (e.g. pixels) Obtenir une représentation simplifiée (mais pertinente) des données originales  Définitions préalables Espace des caractéristiques d (sS, ysd) Espace de décision = ensemble des classes W (sS, xsW), W = {wi, i[1,c] } Règle de décision ( = d(ys) ) Critère de performance

Ex. de classification non paramétrique Classification k-ppv (plus proches voisins) On dispose d’un ensemble (de ‘référence’) d’objets déjà labelisés Pour chaque objet y à classifier, on estime ses k ppv selon la métrique de l’espace des caractéristiques, et on lui affecte le label majoritaire parmi ses k ppv Possibilité d’introduire un rejet (soit en distance, soit en ambiguïté) Très sensible à l’ensemble de référence Exemples : 1-ppv 3-ppv 5-ppv k-ppv (/24)

Connaissance des caractéristiques des classes Cas supervisé Connaissance a priori des caractéristiques des classes Apprentissage à partir d’objets déjà étiquetés (cas de données ‘complètes’) Cas non supervisé Définition d’un critère, ex. : - minimisation de la probabilité d’erreur - minimisation de l’inertie intra-classe  maximisation de l’inertie inter-classes Définition d’un algorithme d’optimisation

Estimation de seuils (cas supervisé) Image = ensemble d’échantillons suivant une loi de distribution de paramètres déterminés par la classe ex. : distribution gaussienne Cas 1D (monocanal), si seuil de séparation des classes wi et wi+1, probabilité d’erreur associée : Maximum de vraisemblance Maximum A Posteriori 

Algorithme des c-moyennes (cas non sup.) Initialisation (itération t=0) : choix des centres initiaux (e.g. aléatoirement, répartis, échantillonnés) Répéter jusqu’à vérification du critère d’arrêt : t++ Labelisation des objets par la plus proche classe Mise à jour des centres par minimisation de l’erreur quadratique : Estimation du critère d’arrêt (e.g. test sur #ch(t) ) c=3 c=4 Remarques : # de classes a priori Dépendance à l’initialisation c=5

Classification : exercices (I) Soit l’image à deux canaux suivante : Soit les pixels de référence suivants : label 1 : valeurs (1,03;2,19) (0,94;1,83) (0,59;2,04) label 2 : valeurs (2,08;0,89) (2,23;1,16) (1,96;1,14) Effectuer la classification au k-ppv. Commentez l’introduction d’un nouveau pixel de référence de label 1 et de valeurs (1,32;1,56) 2,48 1,68 2,24 2,55 2,36 1,64 2,20 1,42 1,96 2,43 1,95 1,61 2,23 1,55 2,50 1,57 1,65 1,92 2,34 1,41 2,45 1,50 2,28 2,53 2,11 2,08 2,27 1,63 1,32 0,80 1,20 0,59 0,94 1,36 1,59 1,03 1,14 1,26 1,04 0,83 1,10 1,09 0,64 1,52 0,40 0,55 1,30 1,33 0,95 0,50 1,13 0,70 0,76 1,16 0,56 1,60 1,06 1,33 0,67 0,55 1,32 0,80 1,42 1,44 1,23 0,51 0,95 0,81 1,04 1,03 1,16 0,43 0,45 1,35 0,91 1,21 1,55 1,53 0,60 1,18 0,83 0,89 0,58 1,14 1,47 1,06 1,56 1,52 1,78 2,04 1,79 2,50 1,72 1,83 2,19 2,14 1,76 2,49 1,46 1,41 1,80 2,31 1,68 2,54 1,62 2,44 2,41 2,40 2,56 2,48 2,35 2,28 1,95 1,51 2,24 2,53 1,50

Classification : exercices (II) Sur l’image à deux canaux précédente : Déterminer les seuils de décision pour chacun des canaux si l’on suppose 2 classes gaussiennes de caractéristiques respectives : canal 1 : (m1,s1)=(2.0,0.38), (m2,s2)=(1.0,0.34) canal 2 : (m1,s1)=(1.0,0.36), (m2,s2)=(2.0,0.39) Effectuer la classification par seuillage. Effectuer la classification c-means pour c=2 Comparer avec les résultats précédents Comparer avec la classification c-means pour c=3 Que pensez-vous de rajouter un terme markovien ? Considérez le cas d’un seul canal, ou celui des deux canaux utilisés de façon conjointe.

Classification bayésienne d’images Formulation du problème Les images observées correspondent à la réalisation y d’un champ aléatoire Y = {Ys, sS}, S ensemble des ‘sites’, |S| = pixels, Ys ;  un autre champ aléatoire X = {Xs, sS}, celui des ‘étiquettes’ ou ‘labels’ des classes, dont la réalisation x est cachée, XsW, |W| = labels ou classes ; Le but de la classification est d’accéder à x connaissant y. Avant les modèles markoviens Calcul de la fonction de décision optimale pour estimer x sachant y irréalisable  simplifications : Pour tout sS, estimation de xs sachant ys  classification aveugle, Pour tout sS, estimation de xs sachant {ys, sVS}  classifications contextuelles

Modèles markoviens Pb : estimer x connaissant y  définir : (i) un modèle ‘d’attache aux données’, i.e. reliant X et Y, ET (ii) un modèle a priori pour X, i.e. favorisant certains types de solutions Modélisation des interactions (locales) entre les  sites Définition des interactions locales  déf. d’un système de ‘voisinage’ : Et du système de ‘cliques’ associé, i.e. soit singletons, soit ensembles de sites tous voisins les uns des autres 4-connexité : 8-connexité : Cliques d’ordre 2 Cliques d’ordre 3 Cliques d’ordre 4

Champs de Markov – champs de Gibbs X est un champ de Markov  où X est un champ de Gibbs de potentiel associé au système de voisinage Vs, sS  avec (C ens. cliques)

Exemple de distribution a posteriori Y gaussien conditionnellement aux classes  Loi a priori = modèle de Potts b(i,j) = b   P(X=x / Y=y) = P(Y=y / X=x).P(X=x)/P(Y=y) 

Estimation du MAP (I) Recuit simulé (Kirkpatrick, 1983) sur algorithme de Métropolis A partir de x0 la configuration initiale, et de T la température initiale, Répéter tant que le compteur est >t et T0 : xk étant la config. courante Mettre le compteur à 0 Pour tous les sites s  S : tirer ls selon la loi uniforme dans W, poser xt = xtk, tS:ts, et xs = ls, calculer DU= si DU < 0 alors sinon : tirer z selon la loi uniforme dans [0,1] si z < exp(- DU / T), alors si xsk+1  xsk incrémenter le compteur de 1 Poser T = a.T

Estimation du MAP (II) Recuit simulé sur échantillonneur de Gibbs A partir de x0 la configuration initiale, et de T la température initiale, Répéter tant que le compteur est >t et T0 : xk étant la config. courante Mettre le compteur à 0 Pour tous les sites s  S : poser xt = xtk, et xtk+1 = xtk tS:ts, Pour chaque i de W, poser xs = i, calculer pi = tirer z selon la loi uniforme dans [0,1], Trouver j minimum tel que Poser xsk+1 = j, si xsk+1  xsk incrémenter le compteur de 1 Poser T = a.T