CSCW – Module 3 – Page 1 P. Dillenbourg & N. Nova Module 2 : Measuring effects.

Slides:



Advertisements
Présentations similaires
Negation… I go… I do not go. = Je vais… Je ne vais pas.
Advertisements

How to solve biological problems with math Mars 2012.
Mirweis Sangin - CRAFT1 Analyse de lapprentissage individuel et collaboratif à partir de contenus multimédias animés. Mirweis Sangin TECFA
Information Theory and Radar Waveform Design Mark R. bell September 1993 Sofia FENNI.
Ministère de l’Éducation, du Loisir et du Sport Responsables des programmes FLS et ELA: Diane Alain et Michele Luchs Animateurs: Diane Alain et Michael.
Notes for teachers: Olympics 2012 Project – parts of body Instructions for using these slides & attaching soundfiles if desired are in the notes pages.
Database irregular verbs Français II. database This is a year-long project. Slide 3 gives students a sample of how to set up the database. Excel (or other.
La norme Iso26000 La norme ISO définit comment les organisations peuvent et doivent contribuer au développement durable. Elle est publiée depuis.
Let’s go back to the verb endings. What are our 3 infinitive endings? ER IR RE What is an infinitive? An unconjugated verb In other words, a verb in the.
Les pronoms objets indirects.  Peux-tu identifier les règles des ‘pronoms objets indirects’ en regardant les exemples suivants?
Objectif: Comment employer un exposant?. Objective: How to use an exponent?
Qui est présent? Écoutons Les préférences Vocabulaire: les activités Panorama Culturel.
Les verbes réfléchis Les normes: Communication 1.2 Comparisions 4.1
Mirweis Sangin - CRAFT1 Analyse de l’apprentissage individuel et collaboratif à partir de contenus multimédias animés. Mirweis Sangin TECFA
THE ADJECTIVES: BEAU, NOUVEAU AND VIEUX 1.
Cultural Comparison 1 minute for directions (in English and French, spoken consecutively): You will make an oral presentation to your class on a specific.
1.What does ‘compagne’ mean? 2. Write the french for the following: I live in the city/town 3.What is blue in french? 4.What is brown in french?
Greetings, formal and informal
Mirweis Sangin - CRAFT1 Analyse de l’apprentissage individuel et collaboratif à partir de contenus multimédias animés. Mirweis Sangin TECFA
FREE HEALTH CARE AND RISK OF MORTALITY ON UNDER 5 YEARS OLD CHILDREEN IN BURKINA FASO : EVIDENCE FROM SAPONE HDSS By Malik LANKOANDE Msc Demography Projet.
Safety in the Science Lab
2 ans, 9 mois Randominaire Tecfa 2006 Cyril Rebetez.
Unité 2 La vie courante Leçon 3 Bon appétit. Thème et Objectifs Everyday life in France In this unit, you will learn how to get along in France. You will.
WALT: Recognise and use phrases in the past tense with opinions of leisure activities. WILF: To be able to use opinions in the past tense. You must be.
Year 10. Bon appetit unit. Introducing ‘en’. ‘en’ – ‘some of it’ or ‘some of them’ ‘En’ is a small but important word in French that is commonly used.
Lucia - LAPP Phi* meeting - 3 novembre Correcting back to the electrons after FSR So far C Z defined w.r.t. electrons before FSR Z status = 3 and.
La Revue: Les verbes – ER. La norm: Comparisons 4.1 Understanding the nature of language What is a « regular verb »? How are regular –ER verbs conjugated?
Warm up Use reflexive and reciprocal verbs to write few facts about your life. Example: Ce matin, je me suis réveillé (reflexive) à 6 heures; puis je me.
La mémoire(1): Comment bien travailler
Bienvenue dans ma classe Madame Bancroft Salle 117 courriel: Blog: myriverside.sd43.bc.ca/ebancroft.
Your team’s name. Préselection file You have just downloaded the preselection file: it’s the first step for you to win the challenge! In this file, you.
Le 4-7 novembre. Qui est présent? Quelle heure est-il? La feuille pour étudier L’examen La Jéopardie!
GCSE Speaking Assessment Presentation Based Discussion In your first GCSE Speaking Assessment, you are being interviewed by your French friend for their.
FLASH! Power Point Sample. Use FLASH! with any level I put a variety of topics in here so you can see how to make a FLASH! with different levels of learners.
Le octobre. L’emploi du temps Qui est présent? Résumons Les accords/desaccords.
Welcome everyone.
la classe de français le 11 mai, 2015
Vendredi 7 novembre Français III-IV Citations : « Je sais que je devrais être raisonnable, mais quand on raisonne en amour c’est comme si on le pesait,
12 Les verbes réfléchis Les normes: Communication 1.2 Comparisions 4.1 Les questions essentielles: 1.What does a reflexive verb show? 2.How is a verb made.
1. Est-ce que Est-ce que, literally translated "is it that," can be placed at the beginning of any affirmative sentence to turn it into a question: Je.
Français 2, 27 octobre 2014 Ouvrez vos livres á la page 43. Use these sentences to describe your floor plan. What do you get if you cross an alley cat.
WE’RE ALMOST DONE – CONGRATULATIONS! LE PRONOM « Y »
1. Check how B would address A. If A says “I am thirsty”, what would B say in repeating the problem? B would change the subject pronoun to
University of Ottawa - Bio 4118 – Applied Biostatistics © Antoine Morin and Scott Findlay 24/07/2015 2:29 PM Bootstrap et permutations.
WALT: THE ALPHABET AND TELLING THE TIME IN FRENCH
Write your answer in French
WALT: how to tell the time in French WILF: to be able to understand ¼ past, ½ past, ¼ to and o’clock (level 2) to be able to understand all times in French.
WILF: TO BE ABLE TO GIVE AN OPINION FOR LEVEL 3
EDHEC OPEN INNOVATION 2016 #OpenInno 2016 [Bus. Case title – Company] Company LOGO.
Unité 6 Leçon B. Forming yes/no questions  To form a yes/no question in French in the simplest way, add a question mark at the end of the sentence, and.
Bon Voyage – Chapitre 1 Un ami, une amie.
LEÇON 17.  Écrivez vos devoirs: Préparez- vous bien pour l’examen d’Unité 1!!!  Sortez vos devoirs: #21 et 22.  Tout de suite: #19, 20, 21, et 22 (It’s.
U NITE 7A: E CHAUFFEMENT 1 L E PREMIER OCTOBRE Le mot juste Fill in each blank with an appropriate vocabulary word. 1. M. Tremaine doit ( must ) avoir.
Verb Conjugation Learning to conjugate your first verb in French.
The comparative and superlative b In this lesson you will learn how to use the comparative and superlative in a sentence. b 1. We will discuss the translation.
Flash-on-flash-off! You will see some French text in a minute but it will only be on the board for a minute then it will disappear.
Objectif: to learn adjectives that can be used to describe a town. Checkout task: to write short sentences to describe a town using both regular and B.A.G.S.
LEÇON 10.  Écrivez vos devoirs: 1.Devoirs packet #7 2.Practice les chiffres # Complete présentations, if necessary.  Sortez vos devoirs: #8-10.
The 4th Power Places and Forms of power How reliable are our sources of information today ? The media.
Fabien Plassard December 4 th European Organization for Nuclear Research ILC BDS MEETING 04/12/2014 ILC BDS MEETING Optics Design and Beam Dynamics Modeling.
OBJECT PRONOUNS WITH THE PASSÉ COMPOSÉ Page 122. Placement  With all object pronouns, placement is the same. DirectIndirectPlaces De+ nouns or ideas.
Negative sentences Questions
Bell Ringer: Qu’est-ce que tu manges? What do you eat? Write what you eat for lunch using the images & your memory/notes/packet: Pour le déjeuner je mange……
Objective: To be able to understand questions in French. Some will notice patterns for asking questions.
O WHY IS IT IMPORTANT TO PLAN AHEAD FOR THE FUTURE?
Le Verbe Avoir L’Objectif: to learn the verb avoir in the present tense and to be able to use it in context By: B. Antoniazzi DDE French 1 U1 L2C AVOIR.
Français 12/14/15 Ouvrez vos livres á la page 112. Ecrivez six phrases de sports et activités. What is worse than “raining cats and dogs?” Important(e)
How to form questions in French
5 Whys A technique for getting past first impressions and finding the root cause of a problem.
Transcription de la présentation:

CSCW – Module 3 – Page 1 P. Dillenbourg & N. Nova Module 2 : Measuring effects

CSCW – Module 3 – Page 2 P. Dillenbourg & N. Nova Scientific approach Experiment Results Hypothesis Experiment CSCW Course Project 1 D1: Qualitative analysis of task distribution D2: Quantitative comparison of task performance D3: Qualitative and quantitative dialogue analysis Experimental research covers a variety of data analysis methods Log Files Results Project 1 Report

CSCW – Module 3 – Page 3 P. Dillenbourg & N. Nova Scientific approach Experiment Hypothesis Experiment CSCW Course Project 1 D1: Qualitative analysis of task distribution Log Files Results

CSCW – Module 3 – Page 4 P. Dillenbourg & N. Nova Deliverable 1  Condition S Condition F Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6 Explanation & Results Do pairs in condition A organize their work differently than pairs in condition B ?

CSCW – Module 3 – Page 5 P. Dillenbourg & N. Nova Scientific approach Experiment Hypothesis Experiment CSCW Course Project 1 D2: Quantitative comparison of task performance Log Files Results Inferential Statistics Are pairs in condition A more effective than pairs in condition B ?

CSCW – Module 3 – Page 6 P. Dillenbourg & N. Nova Performance Time cars need to cross the city ? Group 1; N=20 Condition “functional roles” Group 2; N=20 Condition “structural roles” Is this difference in group means due to sampling or is it the effects of condition changes? If group 2 had been in condition “functional” and group 1 in condition “structural”, group 2 would still get higher performance ?

CSCW – Module 3 – Page 7 P. Dillenbourg & N. Nova Population to whom one want to generalize results 6000 epfl students Sample with whom one obtain results 2 X 20 epfl students Inferential statistics

CSCW – Module 3 – Page 8 P. Dillenbourg & N. Nova Performance Number of 20-subjects groups GroupeSizePerformance

CSCW – Module 3 – Page 9 P. Dillenbourg & N. Nova Performance Number of 20-subjects groups Number of 30-subjects groups

CSCW – Module 3 – Page 10 P. Dillenbourg & N. Nova Performance Time cars need to cross the city Sampling effect ? Group 1; N=20 Condition “functional roles” Group 2; N=20 Condition “structural roles”

CSCW – Module 3 – Page 11 P. Dillenbourg & N. Nova Condition SCondition F Performance Time cars need to cross the city ? 1 pair

CSCW – Module 3 – Page 12 P. Dillenbourg & N. Nova Cond S Cond F Performance Time cars need to cross the city Cond S Cond F Time cars need to cross the city 

CSCW – Module 3 – Page 13 P. Dillenbourg & N. Nova Cond S Cond F Performance Time cars need to cross the city ? Cond S Cond F Time cars need to cross the city ? Is there a real effect ? Is the means difference due to the difference of conditions or to random variations inherent to (semi-)random sampling? The answer does not simply depend of the size of the means difference. This difference must be compared to the group heterogeneity (variance, standard deviation, error, noise) Inter-Group Differences Intra-Group Differences

CSCW – Module 3 – Page 14 P. Dillenbourg & N. Nova Cond S Cond F Performance Time cars need to cross the city Cond S Cond F Time cars need to cross the city  Problems with small samples :  fewer chances to obtain significant differences  do not respect the applicabilty criteria of statistical tests But large samples are expensive !

CSCW – Module 3 – Page 15 P. Dillenbourg & N. Nova Strijbos, J.W, Martens R., Jochems, W & Broers N. THE EFFECT OF FUNCTIONAL ROLES ON GROUP EFFICIENCY: Using Multilevel Modeling And Content Analysis To Investigate Computer-supported, SMALL GROUP RESEARCH, Vol. 35 No. 2, April Perceived Group Efficiency Roles: 1, Project Planner 2. Communicator 3. Reporter 4. Data Collector Non-role groups F = 2.86; p >.10

CSCW – Module 3 – Page 16 P. Dillenbourg & N. Nova Experimental research terminology QuestionDo role incentives change group performance HypothesisExpected results performance (cond F) > performance (cond S) Independent variablewhat do you vary? (or Factors)FonctionalRoles versus StructuraleRoles Dependent variableshow do you measure effects ? Time cars need to cross the city Time group needs to succeed the task Controlled variablesthings you try to keep constant ? Pairs previous degree of mutual knowledge Experimental settings (instructions, …) Intermediate variablesRelate IndependentVarianles to DependentVariables Roles adherence; Roles distribution adequacy Quality and intensity of interactions “Significant” differenceIf we conclude that the DV effects are due to IV, we some probability to make a mistake: GreatOK TrendNo

CSCW – Module 3 – Page 17 P. Dillenbourg & N. Nova Experimental research terminology Plan2 X 2 factorial plan Factorsplan dimensions Modalityrow and column headings Conditionsplan cells Factor 1 FonctionalRoles Structural Roles Factor 2 High Mutual Knowledge Medium Mutual Knowledge Low Mutual Knowledge Condition HFCondition HS Condition MFCondition MS Condition LFCondition LS

CSCW – Module 3 – Page 18 P. Dillenbourg & N. Nova Experimental research terminology Plan2 X 2 factorial plan Factorsplan dimensions Modalityrow and column headings Conditionsplan cells Effectsmain effects interaction effects Factor 1 FonctionalRoles Structural Roles Factor 2 High Mutual Knowledge Medium Mutual Knowledge Low Mutual Knowledge

CSCW – Module 3 – Page 19 P. Dillenbourg & N. Nova Example Study: group learning & animated pictures Apprend-on mieux ou moins bien à partir d’animations par rapport aux images statiques ? Peut-on améliorer l’efficacité des animations en compensant l’aspect fugace de ces dernières ? Apprend-on mieux ou moins bien à 2, à partir d’animations Sangin, Rebetez, Betrancourt, Dillenbourg

CSCW – Module 3 – Page 20 P. Dillenbourg & N. Nova Hypothèses et méthodologie Hypothèses théoriques : 1.L’animation est plus riche en informations qu’une image statique. Elle devrait donc induire un meilleur apprentissage. 2.La charge cognitive due à l’interaction commulée à celle due à la fugacité des animations porterait préjudice à l’apprentissage à 2, à partir des animations. 2.La présence d’un historique rendant permanentes des étapes antérieures d’une animation diminuerait la charge cognitive due à la fugacité des animations, et permettrait aux apprenants d’avoir plus d’éléments pour le grounding. La permanence améliorerait ainsi l’apprentissage.

CSCW – Module 3 – Page 21 P. Dillenbourg & N. Nova Méthode PrétestMatérielNasa-tlxPost-test Astronomie Intro PrétestMatérielNasa-tlxPost-test Géologie Intro FinTest corsi + paper-folding soloduo Accueil + contrat de consentement

CSCW – Module 3 – Page 22 P. Dillenbourg & N. Nova Méthode : facteurs et observations Variable indépendantes: –Mode de présentation (statique vs dynamique) –Permanence de l’information (Avec vs Sans) –Mode d’apprentissage (Solo vs Duo) Variables dépendantes : –Score de rétention –Score d’inférence Variables intermédiaires –Charge cognitive perçue (cinq échelles tirées du nasa-tlx) –Capacités de rotation mentale (paper-folding test) Plan 2 X 2 X 2 [20 paires¨]

CSCW – Module 3 – Page 23 P. Dillenbourg & N. Nova Animation*Collaboration L’animation améliore les performances –de rétention (F (1 ;152) =9.178 ; p<.01) –et d’inférence (F (1 ;152) =6.246 ; p<.05) En inférence, seuls les duo semblent vraiment bénéficier de l’animation –(F (1 ;76) =15.1 ;p<.01)

CSCW – Module 3 – Page 24 P. Dillenbourg & N. Nova Permanence*Collaboration La permanence ainsi que la collaboration n’ont pas d’effet simple significatif L’interaction sur le score d’inférence est significative (F (1 ;152) =6.630 ; p<.05) Les différences d’inférence entre solo et duo sans permanence sont significatives –(F (1 ;74) =5.96 ;p<.05) L’effet de la permanence sur les solos est marginalement significative –(F (1 ;79) =3.91 ; p=.052)

CSCW – Module 3 – Page 25 P. Dillenbourg & N. Nova Capacités de rotation mentale Les capacités de rotation mentale sont corrélées à la réussite aux questionnaires (r=.67 et.68; p<.01) En créant des groupes selon le niveau de paper folding, un effet simple important apparaît –En rétention (F (1 ;72) =36.13 ;p<.01) –Comme en inférence (F (1 ;72) =37.02 ; p<.01 )

CSCW – Module 3 – Page 26 P. Dillenbourg & N. Nova Does an experiment prove anything? A first experiment shows an effect G1>G2. The next experiment shows G2 < G1… Why ? Because it’s impossible to control all contextual factors. So what ? Compare multiple experiments  meta-analysis Replace experimental approach by a deeper qualitative approach  namely ethnological methods.

CSCW – Module 3 – Page 27 P. Dillenbourg & N. Nova If 20 studies give contradictory results, how to conclude on roles effect? Positive (study 1) Positive (study 5) Positive (study 8) Positive (study 9) Positive (study 13) Positive (study 15) Positive (study 16) Positive (study 17) Positive (study 18) Negative (study 2) Negative (study 4) Negative (study 6) Negative (study 7) Negative (study 11) Negative (study 12) No effect (study 3) No effect (study 7) No effect (study 10) No effect (study 14) No effect (study 19) No effect (study 20)

CSCW – Module 3 – Page 28 P. Dillenbourg & N. Nova Weight studies with effect size + 2 (study 1) + 5 (study 5) + 9 (study 8) + 5 (study 9) + 3 (study 13) + 4 (study 15) + 3 (study 16) + 4 (study 17) + 5 (study 18) -1 (study 2) -10 (study 4) -7 (study 6) -8(study 7) -5 (study 11) -9 (study 12) No effect (study 3) No effect (study 7) No effect (study 10) No effect (study 14) No effect (study 19) No effect (study 20)

CSCW – Module 3 – Page 29 P. Dillenbourg & N. Nova Weight studies with sample size and methodological robustness + 2 (study 1) N= (study 5) N= (study 8) N= (study 9) N= (study 13) N= (study 15) N= (study 16) N= (study 17) N= (study 18) N= (study 2) N= (study 4) N= (study 6) N=60 -8(study 7) N= (study 11) N=60 -9 (study 12) N=40 No effect (study 3) No effect (study 7) No effect (study 10) No effect (study 14) No effect (study 19) No effect (study 20)

CSCW – Module 3 – Page 30 P. Dillenbourg & N. Nova R=1 R= R=0.17 R=0.85 Using correlation in experimental research

CSCW – Module 3 – Page 31 P. Dillenbourg & N. Nova Résultats Matrice de corrélations entre les variables principales et secondaires : Rétention Inférenc e word_fre q Gest_ freqP_freqT_freqC_freqM_freq Rétentionr 1.596** Sig Inférencer.596** * Sig word_freqr **.449**.275* ** Sig Gest_freqr **1.836**.666**.287*.596** Sig P_freqr **.836**1.599** Sig T_freqr *.275*.666**.599** Sig C_freqr * * Sig M_freqr **.596** *1 Sig

CSCW – Module 3 – Page 32 P. Dillenbourg & N. Nova MOO experiment, 20 pairs He lies! Example Study Space may narrow down the conversational context

CSCW – Module 3 – Page 33 P. Dillenbourg & N. Nova 20 pairs 2 X [5 worlds]

CSCW – Module 3 – Page 34 P. Dillenbourg & N. Nova Hypothesis 1: The proximity of the emitter to the referred object clarifies the referential context. Emitter.223** Receiver

CSCW – Module 3 – Page 35 P. Dillenbourg & N. Nova but not a causal link Correlation indicates the strength of a relation but not a causal link Trust X Similarity Brain Size X IQ (r = 0.44) Size X Number-of-children Order Education X Vote  … Each state's voting percentage for Kerry (Y) versus percentage of population in that state who have obtained an advanced degree or more Is intelligence correlated with voting for Kerry?

CSCW – Module 3 – Page 36 P. Dillenbourg & N. Nova Scientific approach Experiment Hypothesis Experiment CSCW Course Project 1 D2: Quantitative comparison of task performance Log Files Results Inferential Statistics Are pairs in condition A more effective than pairs in condition B ?

CSCW – Module 3 – Page 37 P. Dillenbourg & N. Nova Your deliverable 2 The independent variable is define: functional versus structural roles Choose one dependent variable: VD –Task performance –Time to complete the task –Number of actions –Degree of division of labour –… Compute VD for 2 X 21 pairs Compute ANOVA with N.NOVA Write a 1-2 page summary: 1.hypothesis; 2.variables 3.descriptive statistics (mean + SD) 4.inferential tests (with SPSS, EXCEL, R, …) 5.discussion of results