Domaine: Mesure R.A.: J’utilise des monômes pour étudier une propriété des figures semblables. J’utilise des radicaux, tout en les reliant au concept d’aire.

Slides:



Advertisements
Présentations similaires
On procède comme on peut le voir sur le dessin ci-contre en effectuant
Advertisements

Aire du parallélogramme.
Les expressions algébriques Les termes semblables.
Le poisson.
LES TRIANGLES.
Racines carrées Racine carrée.
Les nombres carrés et les représentations de l’aire
6.3 L’aire et le périmètre d’un trapèze
Démonstration du théorème
15. Aires.
Mesure CM Calculer des aires.
Démonstration du théorème
Domaine: Mesure R.A.: J’applique le théorème de Pythagore de façon algébrique pour résoudre des problèmes dans divers contextes. Source: CFORP, Les mathématiques,
AIRES Attention ! Ne pas confondre le périmètre d’une figure (longueur de son contour) et l’aire de cette figure (mesure de sa surface). 1 cm² Figure 3.
Domaine: Mesure R.A.: Je démontre ma compréhension du théorème de Pythagore. J’utilise le théorème de Pythagore pour déterminer si un triangle est rectangle.
Domaine: Mesure R.A.: Je déterminer l’aire d’un cône et d’une sphère à l’aide de matériel concret. Source: CFORP, Les mathématiques, un monde sans limite,
Domaine: Mesure R.A.: Je peux expliquer la grande idée derrière les formules pour calculer l’aire de figures planes (carré, rectangle, parallélogramme,
Domaine: Relations R.A.: Je représente une relation par une table de valeurs, un graphique et une équation. Je déterminer le taux de variation et la valeur.
Domaine: Mesure R.A.: Je détermine le volume de pyramides et de cônes (solides pointus). Source: CFORP, Les mathématiques, un monde sans limite, module.
Domaine: Mesure R.A.: Je détermine le volume de sphères. Je détermine la relation entre le volume du cône, le volume de la sphère et le volume du cylindre.
Domaine: Mesure R.A.: Je distingue la valeur exacte et la valeur approximative d’une mesure et je peux les utiliser à bon escient. Je peux appliquer le.
Domaine: Mesure R.A.: Je résous des problèmes portant sur les mesures de prismes, de pyramides et de cylindres. Source: CFORP, Les mathématiques, un monde.
Domaine: Relations R.A.: J’approfondis l’analyse de graphiques distance- temps. Source: CFORP, Les mathématiques, un monde sans limite, module 2: relations.
Domaine: Mesure R.A.: Je peux classifier un triangle selon ses angles à l’aide du théorème de Pythagore J’utilise le théorème de Pythagore pour déterminer.
Domaine: Mesure R.A.: Je transforme la formule de Pythagore selon la situation. Je résous des problèmes à deux étapes portant sur l’aire et le périmètre.
Domaine: Relations R.A.: Je détermine la valeur d’une des variables d’une relation à l’aide de la table de valeurs, du graphique ou de l’équation. J’interprète.
Domaine: Relations R.A.: Je comprends le concept de relation. Je peux définir variable dépendante et variable indépendante. Je peux utiliser des échelles.
Domaine: Mesure R.A.: Je détermine le périmètre et l’aire de figures complexes. Source: CFORP, Les mathématiques, un monde sans limite, module 1: mesure.
Domaine: Mesure R.A.: Je peux additionner et soustraire des monômes. Je peux appliquer le théorème de Pythagore dans divers contextes. Source: CFORP, Les.
Domaine: Relations R.A.: Je distingue une fonction affine d’une fonction non affine d’après sa table de valeurs, son graphique et son équation. Source:
Domaine: Relations R.A.: Je compare deux fonctions, en situations, au moyen de leur table de valeurs et de leur graphique. J’interprète des situations.
Domaine: Relations R.A.: Je reconnais les caractéristiques d’une fonction affine d’après sa table de valeurs et son équation. J’utilise les valeurs exactes.
Domaine: Relations R.A.: J’analyse des relations entre diverse mesures en considérant les formules comme des équations qui définissent des fonctions. Je.
Domaine: Relations R.A.: Je me familiarise avec la calculatrice à affichage graphique afin de déterminer la valeur d’une des variables d’une relation à.
Domaine: Numération et algèbre R.A.: J’approfondis l’habileté à résoudre des équations Je vérifie la racine d’une équation. Source: CFORP, Les mathématiques,
ALGÈBRE ET NOMBRE MATHÉMATIQUES 20-1 Chantal Goudreau Le mardi 4 octobre BIENVENUE!!!
Domaine: Relations R.A.: Je décris une situation pouvant correspondre à un graphique donné. Source: CFORP, Les mathématiques, un monde sans limite, module.
Domaine: Mesure R.A.: Je détermine le volume de prismes, de cylindres et de solides dont les coupes transversales sont congruentes. Source: CFORP, Les.
Domaine: géométrie analytique R.A.: Je détermine si deux droites sont parallèles, sécantes ou perpendiculaires à partir de leur pente, de leur équations.
Domaine: Numération et algèbre R.A.: Je factorise des polynômes par la mise en évidence d’un facteur commun. Source: CFORP, Les mathématiques, un monde.
Domaine: Relations R.A.:
Domaine: Mesure R.A.: Je peux expliquer les grandes idées derrière les formules pour calculer le périmètre et l’aire de figures planes (carré, rectangle,
Domaine: Relations R.A.:
Domaine: Relations R.A.:
Domaine: Mesure R.A.: Je peux déterminer le périmètre et l’aire dans le contexte d’applications. Source: CFORP, Les mathématiques, un monde apprivoisé,
Corrigé des pages 208 et 209.
Domaine: Relations R.A.:
Domaine: Mesure R.A.: Je démontre ma compréhension du théorème de Pythagore. J’utilise le théorème de Pythagore pour déterminer si un triangle est rectangle.
Domaine: Mesure R.A.: Je peux déterminer l’aire d’un cylindre à l’aide de matériel concret. Je peux résoudre des problèmes portant sur les mesures de.
Domaine: Mesure R.A.: Je peux expliquer la formule de la circonférence et de l’aire d’un disque. Je calcule le périmètre et l’aire de figures comportant.
Domaine: Relations R.A.:
Domaine: Mesure R.A.: Je détermine le volume de pyramides et de cônes (solides pointus). Source: CFORP, Les mathématiques, un monde apprivoisé, module.
Domaine: Mesure R.A.: Je peux additionner et soustraire des monômes.
Domaine: Relations R.A.:
Domaine: Numération et algèbre
Domaine: Relations R.A.:
Domaine: Mesure R.A.: Je peux expliquer la grande idée derrière les formules pour calculer l’aire de figures planes (carré, rectangle, parallélogramme,
Domaine: Relations R.A.:
Domaine: Mesure R.A.: Je peux déterminer, à l’aide de matériel concret, l’aire d’un prisme droit et d’une pyramide. Source: CFORP, Les mathématiques,
Domaine: Numération et algèbre
Domaine: Mesure R.A.: Je peux résoudre des problèmes portant sur l’aire et le volume. Source: CFORP, Les mathématiques, un monde apprivoisé, module 1:
Domaine: Mesure R.A.: Je déterminer le volume d’une sphère à l’aide de matériel concret. Source: CFORP, Les mathématiques, un monde apprivoisé, module.
Domaine: Mesure R.A.: Je peux déterminer l’aire et le périmètre de figures complexes en calculant d’abord certaines mesures manquantes. Source: CFORP,
Domaine: Numération et algèbre
Domaine: Mesure R.A.: Je détermine le volume de prismes, de cylindres et de solides dont les coupes transversales sont congruentes. Source: CFORP, Les.
Domaine: Mesure R.A.: Je démontre ma compréhension du théorème de Pythagore. J’utilise le théorème de Pythagore pour déterminer si un triangle est rectangle.
Domaine: Mesure R.A.: Je peux expliquer la formule de la circonférence et de l’aire d’un disque. Je calcule le périmètre et l’aire de figures comportant.
Domaine: Relations R.A.:
Domaine: Mesure R.A.: Je peux expliquer les formules de la circonférence et de l’aire d’un cercle. Je peux calculer le périmètre et l’aire de figures.
Transcription de la présentation:

Domaine: Mesure R.A.: J’utilise des monômes pour étudier une propriété des figures semblables. J’utilise des radicaux, tout en les reliant au concept d’aire. Source: CFORP, Les mathématiques, un monde sans limite, module 1: mesure.

Problème du jour #4 Rappel: laisser les traces de votre stratégie.

Mise en situation: Retour sur le devoir: développer sa compétence.

Mise en situation (suite): Retour sur le devoir: développer sa compétence.

Mise en situation (suite)

Rappel des R.A. J’utilise des monômes pour étudier une propriété des figures semblables. J’utilise des radicaux, tout en les reliant au concept d’aire.

Expérience d’apprentissage. Modelage.

Modelage (suite)

Questionnement:

Modelage (suite) Utiliser l’algèbre pour démontrer.

Modelage (suite)

Modelage (suite) Démontrer de façon algébrique ce qui arrive au périmètre et à l’aire lorsque les dimensions d’un carré sont triplées.

Pratique guidée Cahier de l’élève p. 327

Pratique guidée (suite) Cahier de l’élève p. 327

Modelage Est-ce vrai pour le triangle?

Modelage Utiliser l’algèbre pour démontrer ses résultats

Objectivation (retour sur les apprentissages) Prendre en notes:

Expérience d’apprentissage - Prend une feuille de papier quadrillé au centimètre. - Trace un carré dont l’aire est égale à 1. - Trace un carré dont l’aire est égale à 4.

Expérience d’apprentissage (suite) - trace un carré dont l’aire est égale à 2. Les sommet doivent être placés sur les points de treillis de la feuille.

Expérience d’apprentissage (suite) Quelle doit être la longueur des côtés du carré étant donné que son aire est égale à 2?

Expérience d’apprentissage (suite) Écrire une expression simplifiée pour le périmètre du carré.

Un peu d’histoire…

Expérience d’apprentissage (suite) - Tracer un carré ayant un aire de 5.

Expérience d’apprentissage (suite) Écrire une expression pour le périmètre du carré

Expérience d’apprentissage (suite) Quelle est l’aire du carré? Quelle est la longueur des côtés du carré?

Objectivation Retour sur les apprentissages Si l’on double la longueur des côtés d’un carré, l’aire sera multipliée par 4.

Pratique autonome: Cahier de l’élève p. 328 et 329.

Pratique autonome (suite)

Développer sa compétence à terminer pour le prochain cours. Cahier de l’élève p. 329 et 330.