Introduction au traitement des eaux de consommation Procédés chimiques dans l’industrie 210-124-AH
La mobilité et fragilité des eaux de surface Le cycle de l’eau: Plusieurs sources de pollution altèrent la qualité de l’eau de surface: Urbaine; Agricole; Industrielle.
Cycle de l’eau
Sources urbaines eaux usées municipales ou privées non traitées effluents d’eaux usées insuffisamment traitées ou non désinfectées eaux usées non traitées provenant des trop-pleins de réseaux d’égouts eaux de ruissellement provenant des lieux d’enfouissement sanitaire
Sources agricoles et industrielles eaux de ruissellement contaminées par les lisiers eaux de ruissellement contaminées par les engrais Industrielles: certaines eaux de ruissellement et de procédés
Bassin versant Séparation physique par topographie naturelle du terrain: Toutes les gouttes de pluie qui tombent s’écoulent, puis se rejoignent en un même endroit pour former une rivière qui débouche sur un fleuve ou dans la mer; Les frontières entre les bassins versants forment ce qu'on appelle la ligne de partage des eaux, comme on peut le voir sur la figure.
Régions hydrographiques 7
Règlement sur la qualité de l’eau potable L’eau de surface est plus vulnérable à la contamination que l’eau souterraine: Les stations d’épurations s’y approvisionnant sont plus à risque de rencontrer un niveau de contamination saturant la capacité de traitement d’une usine de base; Elles doivent donc être dotées d’une chaîne de traitement plus complète.
Qualité VS accessibilité CARACT. EXAMINÉES EAUX DE SURFACE EAUX SOUTERRAINES Température Variable selon les saisons Relativement constante Turbidité Variable et parfois très élevée Faible ou nulle Ammoniaque Seulement dans les eaux polluées Présence fréquente Éléments vivants Bactéries, virus et protozoaires selon la qualité de l'eau brute Rarement présents Oxygène dissout Près de la saturation Absence totale la plupart du temps Éléments minéraux Présence variable en fonction du type de sol, des précipitations, des rejets en amont, etc. Présence constante et généralement plus élevée que dans les eaux de surface de la même région Nitrates En général, peu abondant Taux parfois élevé
Objectifs minimaux de traitement des eaux selon le type d’eau à traiter Classe Types d’eau brute Réduction minimale obligatoire des organismes cibles Cryptosporidium Giardia Virus I Eau de surface ou eau souterraine susceptible d’être sous l’influence d’une eau de surface 2 log (99%) 3 log (99,9%) 4 log (99,99 %) II Eau souterraine non susceptible d’être sous l’influence d’une eau de surface mais avec des antécédents de contamination fécale Aucune III Eau souterraine non susceptible d’être sous l’influence d’une eau de surface ni ayant des antécédents de contamination fécale
Taille comparative des microorganismes Virus . Parasite Bactérie (Protozoaires : Giardia, Cryptosporidium)
Variation des conditions climatiques Température Précipitations Choc acide printanier
Variation des conditions climatiques Sécheresse Efflorescence algale (algal bloom) Déversement accidentels ou illicites Frasil, moules zébrées, ensablement 13
Schéma général d’un procédé de traitement des eaux de surface
La prise d’eau Prise d’eau : Différente selon que la source est une eau de surface ou souterraine: Eau libre: Habituellement munies d'une grille fixe servant à retenir les débris grossiers. Eau souterraine: Mise à profit de la gravité (bassin de rétention creusé sous le niveau de l’eau souterraine, puit, galerie de captage) ou d’une succion mécanique (pointe filtrantes) pour capter l’eau.
Le dégrillage À la sortie de la prise d’eau, on retrouve la structure de dégrillage ou tamisage: Rôle : Retenir les débris et de protéger les équipements situés en aval Sa capacité à retenir les débris dépendra de la grosseur des mailles de la grille. Débris: Branchage, petits poissons/animaux, cailloux, etc. Généralement suivi d’une préozonation: Oxydation de la matière organique et désinfection partielle.
Coagulation, floculation et décantation Rôle : Diminuer la turbidité selon les normes en vigueur de l’eau produite (0,3 UTN, Unité de Turbidité Néphélométrique) Éliminer entre 30 et 50 % du COT (Carbone Organique Total) et jusqu’à 80 % des substances humiques (produits de la décomposition des matières organiques) Enlever 99 % (2 log) des oocystes de Cryptosporidium, 99,9 % des kystes de Giardia (3 log) et 99,99 % des virus (4 log) lorsqu’elle est suivie d’une filtration et désinfection
Tailles des particules présentes dans les eaux naturelles
Particules présentes dans les eaux naturelles Matières en suspension: Matières pouvant être décantées en deux heures ou être retenues sur un filtre de o,45 µm Particules colloïdales: Ne décantent pas naturellement, principalement à cause de leur charge électrique de surface (majoritairement négative) Composés en solution : Gaz dissous, composés minéraux, polluants organiques.
Particule colloïdale
Coagulation Sert à réduire les forces de répulsion: Déstabilisation des particules colloïdales; Favorisation de l’agrégation: Ce qui favorise la décantation ou la flottation Tout électrolyte peut être utilisé pour déstabiliser un colloïde: Réduction de la double couche par l’augmentation de la force ionique Efficacité proportionnelle à la valence des cations Al3+ > Fe3+ > Ca2+ > Na+ Les ions trivalents sont plus efficaces et ont tendance à former, aux pH des eaux naturelles : Des hydroxydes insolubles Piégeage des particules dans ces cristaux. Des ions complexes avec certains anions, qu’on peut amener à précipiter en jouant sur le pH
Floculation La coagulation déstabilise les particules: Une légère agitation permet la formation de flocons Pour accélérer la floculation: Augmenter le volume et le nombre des particules en suspension L’ajout de polyélectrolytes permet l’augmentation rapide du volume des particules par agglomération L’ajout de microsable augmente le nombre de particules en suspension et crée une grande surface de contact où les particules peuvent s’agglomérer. L’étape de maturation consiste en un mélangeage rapide dont la vitesse est contrôlée: De façon à favoriser l’agglomération Mais sans briser les microflocons.
Pontage du floc
Décantation Séparation des flocons et de l’eau: Se fait rarement dans des décanteurs statiques (trop long) Plutôt dans des décanteurs dynamiques: Lamellaires; À lit de boues; À recirculation de boues À flocs lestés
Décanteur statique
Décanteur lamellaire
Lamelles Utilité des lamelles: Augmentent la surface où les flocons peuvent percuter une paroi L’inclinaison des parois favorise l’écoulement des boues au fur et à mesures qu’elles se déposent sur les parois des lamelles. b
Plaques de décantation
Décanteur à lit de boues L’entrée dans la zone de boues permet de réaliser un contact entre les microflocons et les boues Ce lit fluidisé permet d’augmenter la vitesse de sédimentation
Décanteur à recirculation de boues
Décanteurs à flocs lestés
Décanteurs à floc lestés L’ajout de microsable accroit la masse volumique des flocons Ce qui permet un accroissement très net de la vitesse de sédimentation : À l’usine de Vaudreuil, entre 5 et 8 minutes séparent l’arrivée de l’eau brute de la sortie du décanteur, qui est de ce type. Un système d’hydrocyclone permet la séparation par masse volumique des boues du microsable, lequel est réinjecté dans le décanteur.
Hydrocyclone
Supervision du procédé Jar-test: Coagulation : introduction à l’aide de pipettes des produits pour le rajustement éventuel du pH (acide ou base) ou de l’alcalinité, puis introduction du coagulant à l’aide de pipettes ou de micro-pipettes sous agitation rapide (100 à 200 tours/min) durant 30 à 120 secondes (parfois plus longtemps). Floculation : Agitation lente (20 à 40 tours/min) pendant 5 à 20 minutes. Observer la vitesse de formation des flocons et leur taux de grossissement. Décantation : de 20 à 60 minutes.Filtration : si l’on souhaite analyser la qualité de l’eau filtrée. Elle peut être réalisée sur sable ou sur membrane de 0,45 µm. Permet de déterminer de façon sûre la quantité de réactif à utiliser
Filtration La filtration permet d’éliminer : Les filtres peuvent être: La très grande majorité des petites particules non-décantées; Un majorité des composés organiques en solution, par adsorption sur charbon activé Les filtres peuvent être: À sable (filtration rapide) À membrane
Filtre rapide
Faux fond
Caractéristiques des matériaux du filtre rapide Matériel Densité Sphéricité Porosité du lit (µm) Sable de silice 2,65 0,80 – 0,90 0,38 – 0,42 Anthracite 1,5 0,70 – 0,75 0,45 – 0,50 Charbon actif 1,35 Grenat 4,2 Ilménite 4,8
Lavage à contre-courant Le lavage à contre-courant consiste à dilater le lit filtrant, à départir les grains de sable ou tout autre média de leurs saletés, et à transférer celles-ci dans le courant d’eau vers le rejet des eaux de lavage. Le lavage doit se faire de façon énergique, tout en évitant de déranger (déplacer) la couche de gravier et d’entraîner le sable à l’égout. Le frottement des grains de sable et de l’anthracite (charbon concassé) permet de déloger les dépôts agglomérés. Par différence de masse volumique, les couches se redéposent de façon superposée, le sable sous l’anthracite.
Filtration membranaire
Contrôle du pH Ajout de carbonate de sodium : Stabilisation du pH à une valeur légèrement basique Provoque un effet entartrant recherché : Augmentation de l’épaisseur de la couche de dépôts dans les canalisations moins dommageable que leur oxydation : Ultimement, mènerait à des bris.
Désinfection Paramètres Chlore Ozone ClO2 NH2Cl Rayons UV Source 1. Cl2 gazeux 2. Eau de Javel 3. Généré sur site Généré sur site (O2 + énergie) (NaClO2 + énergie) (Cl2 + NH3) (Lampes UV au mercure) Utilité DP, DS, GO, C, Ox DP, GO, C, Ox, FB DS DP Avantages 1. Coût 2. Facilité d’utilisation 3. Polyvalence (DP+DS) 4. Laisse un résiduel dans le réseau 1. Contrôle des goûts / odeurs et couleur 2. Peut-être combiné à une filtration biologique 3. Réduction des THM sous certaines conditions 1. Ne réagit pas avec l’ammoniaque 2. Ne forme pas de THM / AHA 3. Excellent pour oxyder Fe / Mn 1. Formation minime de THM / AHA 2. Meilleure persistance que le Cl2 en réseau 3. Plus efficace que le Cl2 pour contrôler la recroissance 1. Facile à ajouter à une installation existante 2. Efficace en eaux froides 3. Coût compétitif 4. Aucun sous-produit de désinfection connu à ce jour DP : Désinfection primaire (inactivation des pathogènes), GO : Goûts et odeurs, DS : Désinfection secondaire (désinfection en réseau de distribution), C : Couleur, Ox : Oxydation du fer et manganèse, FB : À combiner avec des filtres biologiques
Paramètres Chlore Ozone ClO2 NH2Cl Rayons UV Inconvénients 1. Risque relié au Cl2 gazeux 2. Goûts et odeurs 3. THM 1. Bromates 2. Pas de résiduel persistant 3. Procédé relativement complexe et coûteux 4. Risque relié à l’ozone 1. Chlorites / chlorates 2. Goûts et odeurs pour certains types d’eau 3. ClO2 résiduel recommandé = 0,80ppm 4. Sécurité reliée à l’utilisation du NaClO2 1. Possibilité de nitrification en réseau 2. Faible efficacité comme désinfectant primaire 1. Pas de résiduel persistant 2. Technologie en validation 3. Encrassement possible des lampes selon les types d’eau / coagulants Note : lorsque se cachent derrière… Efficacité en désinfection2 Virus (4log) Très bonne Excellente Bonne Faible Acceptable Giardia (3log) Cryptosporidium (2log) Négligeable
Effet des désinfectants sur les parasites
Ozonation Une seconde ozonation a lieu pour assurer : la désinfection primaire; l’oxydation de polluants inorganiques (fer, manganèse, sulfure); l’oxydation de micropolluants organiques et des composés responsables du goût et de l’odeur, des polluants phénoliques et de certains pesticides; l’oxydation de macropolluants organiques et l’amélioration de la biodégradabilité de composés organiques; le contrôle des précurseurs des sous-produits de désinfection et la réduction de la demande en chlore.
Ozone L’ozone est un agent oxydant puissant, capable de désinfecter l’eau à une concentration et un temps de contact moindres que ceux de désinfectants plus faibles comme le chlore et le bioxyde de chlore. L’ozone est cependant instable, il se transforme rapidement en oxygène et sa demi-vie est très courte (30 minutes à 20°C et un pH de 7). Il n’est pas possible de maintenir de l’ozone résiduel dans l’eau traitée.
Production de l’ozone
Ozoneur
Introduction de l’ozone
NaOCl + H2O HOCl + Na+ + OH- Hypochlorites L’ajout d’hypochlorite de sodium dans l’eau se traduit par la formation d’acide hypochloreux (HOCl) selon la réaction suivante : NaOCl + H2O HOCl + Na+ + OH- La réaction de l’hypochlorite de calcium (Ca(OCl)2) dans l’eau L’ajout d’hypochlorite de calcium dans l’eau se traduit par la formation d’acide hypochloreux (HOCl) selon les réactions suivantes : Ca (OCl)2 + 2 H2O 2 HOCl + Ca+2 + 2 OH-
Chlore HOCl OCl- + H+ Cl 2 + H2O HClO + H+ + Cl – Le chlore mis en présence de l’eau réagit instantanément, comme suit : Cl 2 + H2O HClO + H+ + Cl – En fonction du pH du milieu, l’acide hypochloreux (HOCl) se dissocie plus ou moins en ions hypochlorites (OCl-) selon la sous-réaction d’équilibre suivante : HOCl OCl- + H+ Le chlore résiduel est mesuré à l’extrémité de tous les réseaux de distribution, où il doit être d’au moins 0,3 mg/L
Pourcentage de HClO en fonction du pH
Temps de demi-vie de l’acide hypochloreux dans l’eau Température Durée de demi-vie en jours 20o C 100 30o C 25 40o C 5 50o C 1 60o C 0,3