Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parStéphanie Métivier Modifié depuis plus de 5 années
1
Exercice 3 : I, J et K sont des points sur les arêtes du tétraèdre
Exercice 3 : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D I J K A B C
2
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D I J K A B C
3
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D er cas : Les deux plans ne sont pas parallèles, donc X est une droite. I J K A B C
4
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D 1er cas : Les deux plans ne sont parallèles, donc X est une droite. J, K, D, C et B sont coplanaires, car appartiennent à la I même face DCB, donc aussi (JK) et (CB). Elles ne sont pas J K parallèles, donc sécantes en un point E. E A B C
5
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D 1er cas : Les deux plans ne sont parallèles, donc X est une droite. J, K, D, C et B sont coplanaires, car appartiennent à la I même face DCB, donc aussi (JK) et (CB). Elles ne sont pas J K parallèles, donc sécantes en un point E. E E appartient à (JK) donc à (IJK). A B E appartient à (CB), donc à (ABC). Donc à X. C
6
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D 1er cas : Les deux plans ne sont parallèles, donc X est une droite. J, K, D, C et B sont coplanaires, car appartiennent à la I même face DCB, donc aussi (JK) et (CB). Elles ne sont pas J K parallèles, donc sécantes en un point E. E E appartient à (JK) donc à (IJK). A B E appartient à (CB), donc à (ABC). Donc à X. C Même méthode pour F, intersection de (IJ) et (AC).
7
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D 1er cas : Les deux plans ne sont parallèles, donc X est une droite. J, K, D, C et B sont coplanaires, car appartiennent à la I même face DCB, donc aussi (JK) et (CB). Elles ne sont pas J K parallèles, donc sécantes en un point E. E E appartient à (JK) donc à (IJK). A B E appartient à (CB), donc à (ABC). Donc à X. C Même méthode pour F, intersection de (IJ) et (AC). ou G, intersection de (IK) et (AB).
8
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D 1er cas : Les deux plans ne sont parallèles, donc X est une droite. J, K, D, C et B sont coplanaires, car appartiennent à la I même face DCB, donc aussi (JK) et (CB). Elles ne sont pas J K parallèles, donc sécantes en un point E. E E appartient à (JK) donc à (IJK). A B E appartient à (CB), donc à (ABC). Donc à X. C Même méthode pour F, intersection de (IJ) et (AC). ou G, intersection de (IK) et (AB). E et F appartiennent à X, et X est une droite, donc
9
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D 1er cas : Les deux plans ne sont parallèles, donc X est une droite. J, K, D, C et B sont coplanaires, car appartiennent à la I même face DCB, donc aussi (JK) et (CB). Elles ne sont pas J K parallèles, donc sécantes en un point E. E E appartient à (JK) donc à (IJK). A B E appartient à (CB), donc à (ABC). Donc à X. C Même méthode pour F, intersection de (IJ) et (AC). ou G, intersection de (IK) et (AB). E et F appartiennent à X, et X est une droite, donc X = (EF)
10
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D ème cas : Les deux plans sont parallèles distincts, et X est vide si d’après Thalès DI/DA = DJ/DC = DK/DB ≠ 1 I K J A B C
11
Exercice : I, J et K sont des points sur les arêtes du tétraèdre
Exercice : I, J et K sont des points sur les arêtes du tétraèdre. Déterminez l’intersection ( nommée X ) de (IJK) et (ABC). D ème cas : Les deux plans sont parallèles confondus, et X = (ABC) = (IJK) si d’après Thalès DI/DA = DJ/DC = DK/DB = 1 A B C
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.