La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Les étoiles au plomb Cauchemar d'alchimiste, Rêve d'astronome « Comment en un plomb vil l'or pur s'est-il changé ? » Racine, J. : 1691, Athalie, III, 7.

Présentations similaires


Présentation au sujet: "Les étoiles au plomb Cauchemar d'alchimiste, Rêve d'astronome « Comment en un plomb vil l'or pur s'est-il changé ? » Racine, J. : 1691, Athalie, III, 7."— Transcription de la présentation:

1 Les étoiles au plomb Cauchemar d'alchimiste, Rêve d'astronome « Comment en un plomb vil l'or pur s'est-il changé ? » Racine, J. : 1691, Athalie, III, 7 ALTAIR 27 novembre 2004

2 Alchimie " Sous l'action des astres, les métaux vils deviennent des métaux purs; mais ce travail, qui s'effectue au sein de la terre, est très lent. L'alchimiste cherchera, dans son laboratoire, à reduire le laps de temps nécessaire à ces transformations. "Par la résolution des mixtes, séparer le pur de l'impur". " "Le plomb renferme beaucoup de terre: il est opaque et gris foncé; l'or contient beaucoup moins de terre et un peu de feu qui le colore." Des alchimistes aux briseurs d'atomes, Rassenfosse et Guében, 1928 Paracelse décrit minutieusement la Pierre philosophale, qu' il a vue semblable à un rubis foncé. Cosme Ier de Médicis paye ducats la recette de la transmutation du plomb en or, recette qu'il avait expérimentée et reconnue exacte. Helvétius, Spinoza, Newton,...

3 Sommaire De quoi sont faites les étoiles? D'où tirent-elles leur luminosité? Les constituants de la matière Quelques processus de nucléosynthèse Big Bang les différentes phases de combustion les processus r et s L'évolution stellaire le diagramme de Hertzsprung-Russell Le processus s: des preuves: Tc, étoiles à Ba, étoiles S une prédiction testable: l'existence d'étoiles au plomb vérification de cette prédiction à la recherche de bonnes candidates observations résultats Conclusion

4 1802: William Wollaston ( ) remarque que le spectre du soleil comporte des raies obscures. Attribue ces raies à des séparations naturelles entre les couleurs. 1814: Fraunhofer observa 600 raies dans le spectre solaire et mesura la longueur d'onde de 324 raies. 1864: Huggins fit correspondre certaines de ces raies observées dans les étoiles avec des raies de substances observées en labo, démontrant que les étoiles sont faites de matière "normale" De quoi sont faites les étoiles?

5 Le spectre électromagnétique

6 Hélium Oxygène Spectroscopie Spectre continu Spectre en absorption Spectre en émission

7 Spectroscopie Le spectre du soleil Fraunhofer (1817) Spectre d'une étoile Spectre du soleil

8 Sources d'énergie stellaire (suite) Chimique ? Energie du lien chimique 100 kJ / mole 1 mole = Avogadro particules = particules Une particule moyenne 50 u.m.a. (1 u.m.a. = 1 unité de masse atomique = 1/12 masse de 12 C) possède une énergie chimique 100 kJ / 50g 2000 J/g L'énergie libérée sera: E chim = 2000 J/g M Luminosité du soleil = L = J / s La durée de vie du soleil serait donc: Kelvin Helmholtz = E chim / L s 300 ans impossible Sources d'énergie stellaire

9 Sources d'énergie stellaire (suite) " Si le soleil était composé de charbon de terre massif brûlant dans l'oxygène pur, il ne pourrait brûler pendant plus de six mille ans sans être entierement consumé: il serait donc éteint depuis l'origine des temps historiques " Camille Flammarion, Astronomie Populaire (1879) Helmoltz 1854 contraction gravitationnelle

10 Gravitationnelle? Ordre de grandeur de l'énergie gravitationnelle: Eg -G M 2 /R Eg = -(Ef-Ei) = énergie rayonnée pendant l'effondrement Supposons Ri >> Rf alors Eg -Ef G M 2 /R J (avec = soleil) Luminosité du soleil = L = J / s La durée de vie du soleil serait donc: Kelvin Helmholtz = Eg / L s 30 millions d'années or l'âge de la terre est déjà de 4.6 milliards d'années impossible

11 Sources d'énergie stellaire (fin) Nucléaire ? Combustion de l'hydrogène en hélium: 4p 4 He libère MeV = J par réaction (1 eV = J ; 1 MeV = 1 million d'eV) soit J par 4 u.m.a. formées soit J Avogadro /4 J / g J/g En supposant que seulement 10% de la masse solaire participe à la fusion nucléaire, l'énergie libérée sera: E nuc = J/g 0.1 M Le temps de vie du soleil est: nucléaire = E nuc / L s 10 milliards d'années la source d'énergie stellaire doit être nucléaire ( et principalement assurée par la combustion d'hydrogène en hélium)

12 Les constituants de la matière Les constituants de la matière: PROTONS: 1836 fois la masse de l'électron; chargés positivement. Nombre de protons: Z neutrons: environ la même masse que le proton; non chargés. Nombre de neutrons: N ELECTRONS: chargés négativement

13 Les atomes Les protons et neutrons s'associent en nombre à peu près égal (stabilité) pour former un noyau nucléaire Autour du noyau orbitent un nombre d'électrons égal au nombre de proton (neutralité électrique) Le tout forme un atome, caractérisé par le nombre de protons Z du noyau

14 Les éléments chimiques Le nombre de protons va fixer les propriétés microscopiques de l'atome: capacité de se lier avec d'autres atomes, interaction avec la lumière, facilité à perdre / gagner des électrons, etc. Quand une quantité énorme d'atomes de même type est réunie, les propriétés microscopiques de l'atome se traduisent par des caractéristiques macroscopiques: état gazeux, liquide ou solide à une température donnée, couleur, consistance, viscosité / dureté

15 Carte de Segrè des nucléides

16

17 Nucléosynthèse = synthèse des noyaux La théorie de la nucléosynthèse explique l'origine et les abondances relatives des éléments chimiques dans l'Univers Courbe d'abondance des éléments chimiques et de leurs isotopes dans le système solaire: roches terrestres météorites: chondrites carbonées, météorites primitives représentatives de la composition chimique de la nébuleuse protosolaire spectroscopie solaire et stellaire La courbe d'abondance est universelle ! roches terrestres météorites Soleil étoiles à quelques exceptions près: Li, Be, B solaire Li, Be, B météoritique Li, Be, B solaire Li, Be, B météoritique météorites pauvres en éléments volatils (He) météorites pauvres en éléments volatils (He) différences étoiles - soleil (évolution stellaire, évolution chimique de la Galaxie) différences étoiles - soleil (évolution stellaire, évolution chimique de la Galaxie) - La similitude de la composition des objets de l'univers suggère une parenté commune pour l'ensemble des noyaux atomiques La nucléosynthèse

18

19 Energie de liaison La masse d'un noyau est toujours inférieure à la somme des masses de ses constituants: Défaut de masse = ( Z M p + N M n ) - M noyau (Rappel: noyau = A nucléons dont Z protons et N neutrons) Formation du noyau à partir de ses constituants (neutrons et protons): qu'est devenu cette masse manquante? Libérée sous forme d'énergie (rayon gamma): E = m c 2 Energie de liaison du noyau = c 2 [ ( Z M p + N M n ) - M noyau ] C'est aussi l'énergie qu'il faut fournir au noyau pour le briser en ses constituants (neutrons et protons).

20

21 Similarités entre la courbe d'abondance universelle et la courbe de l'énergie de liaison par nucléon la proportion des éléments de l'univers reflète des mécanismes nucléaires environnements très chauds/ particules très énergétiques Big Bang Etoiles Dès 1920: Arthur Eddington suggère que les étoiles tirent leur énergie de la fusion de l'hydrogène en hélium (controverse: Perrin?)

22 Preuve supplémentaire En 1952, Merrill observe du technétium à la surface d'étoiles S Or tous les isotopes du technétium sont instables (radioactifs) Durées de vie inférieures à quelques millions d'années, donc bien inférieures à l'âge de l'univers. une nucléosynthèse a lieu dans les étoiles

23 Technétium: radioactif si une étoile a du Tc, alors elle est en train d'en fabriquer.

24 La nucléosynthèse primordiale (Big Bang) t = 1 minute: protons, neutrons, electrons, photons, neutrinos Les grandes classes de processus de nucléosynthèse t = 1- 4 minutes: T< 10 9 K: deuterium (1%), 3 He, 4 He (24%), Be, 7 Li à partir des protons primordiaux t >5 minutes: T,P trop basse, la nucléosynthèse s'arrête. L'univers est alors composé de 76% (en masse) d'hydrogène, 24% d'hélium et de traces de 2 H, 3 He, Be, 7 Li. (succès du Big Bang)

25 Nucléosynthèse du big bang

26 Combustion de H : cycle pp (prédominante ) cycle CNO(nucléosynthèse: 14 N) NB: Dans les 2 cas, après combustion de l'H, l'étoile a libéré 6 MeV par proton converti en 4 He. Or le réservoir d'énergie nucléaire est 8.6 MeV (énergie de liaison du fer). il ne reste plus à l'étoile que 2.6 MeV

27 combustion de l'hydrogène

28 Combustion de He: réaction triple alpha: 4 He + 4 He 8 Beprod. d'énergie: 0.7 MeV/nucléon 8 Be + 4 He 12 C + durée: 1/2 million d'années (25 M ) 12 C + 4 He 16 O + nucléosynthèse: 12 C, 16 O T millions de degrés Dès 1952, prédiction par Fred Hoyle du niveau du 12 C à 7.6 MeV

29 Combustion de l'hélium

30 - structure et évolution stellaire, nucléosynthèse - étude du processus triple alpha (combustion de He), et, pour expliquer l'abondance de carbone dans la nature, prédiction d'un niveau excité du 12 C, plus tard confirmée par l'expérience par les physiciens nucléaires de Caltech. Lien controversé avec le principe anthropique. - article B 2 FH - adversaire du Big Bang, partisan de la création continue - partisan de la panspermie - condamnation du fait que Jocelyn Bell n'ait pas obtenu le prix Nobel pour la découverte des pulsars en même temps que son directeur de thèse Antony Hewish - auteur de livres de science-fiction (Le nuage noir) Fred Hoyle

31 combustion du carbone 12 C + 12 C 20 Ne + 4 He(50%) 23 Na + p(50%) durée: 600 ans (25 M ) 23 Mg + n(rare) nucléosynthèse: 20 Ne, 23 Na combustion du néon durée: 1 an (25 M ) nucléosynthèse: 16 O, 24 Mg combustion de l'oxygène durée: 6 mois (25 M ) nucléosynthèse: divers noyaux Mg Ar combustion S-Mg-Si durée: 1 jour (25 M )

32

33

34

35

36 La nucléosynthèse explosive Lors des explosions de type novae (cycle CNO chaud) Lors des explosions de type supernovae La catastrophe du fer T 5 milliards de degrés : photodésintégration du fer Ni, Fe, n p, n contraction gravitationnelle T photodésintégrations + rapides implosion du coeur de Fer ? ? explosion des couches externes supernova processus très endothermique: -2.2 MeV/n équilibre nucléaire statistique

37

38 La nucléosynthèse explosive Lors des explosions de type supernovae Processus r (« rapid ») capture rapide de neutrons les isotopes instables n'ont pas le temps de se désintégrer avant de capturer un nouveau neutron production d'éléments plus lourds que le fer (isotopes riches en neutrons) Processus p (photo-émissions de neutrons) -> production d'éléments plus lourds que le fer (isotopes riches en protons)

39 La nucléosynthèse non explosive Auxiliaire aux cycles de production d'énergie -> Processus s (« slow ») capture lente de neutrons tout isotope instable se désintègre avant de capturer un nouveau neutron production d'éléments plus lourds que le fer (isotopes proches de la vallée de stabilité, jusqu'au 208 Pb et 209 Bi) Ex: 56 Fe 57 Fe 58 Fe 59 Fe (captures de neutrons sur noyaux stables) puis: 59 Fe 59 Co + e - + e (désintegration beta -)

40

41 La nucléosynthèse par spallation dans le milieu interstellaire et/ou à la surface d'étoiles actives (flares stars) collision de particules du rayonnement cosmique ou de particules accélérées dans les "flares" (protons, He), suffisamment énergétiques pour casser les noyaux de C,N,O production de Li, Be, B NB: également production de Li dans les enveloppes d'étoiles géantes de type asymptotique.

42

43

44 1920: Arthur Eddington suggère que les étoiles tirent leur énergie de la fusion de l'hydrogène en hélium. Querelle Perrin (1919) Démarche historique 1928: George Gamow ( ) introduit le facteur de Gamow (formule donnant la probabilité d'une réaction nucléaire). Fameux article "Alpher-Bethe-Gamow". Echec de Gamow pour élaborer les éléments plus lourds que l'hélium lors du Big Bang. 1938: Hans Bethe décrit les différentes possibilités de combustion de l'hydrogène en hélium et sélectionne les 2 processus à l'oeuvre dans les étoiles (cycles pp et CNO). Pense que le soleil utilise le cycle CNO. Prix Nobel 1967.

45 1957: Margaret Burbidge, Goeffrey Burbidge, William Fowler et Fred Hoyle publient leur article B 2 FH, qui explique comment les étoiles peuvent fabriquer tous les éléments (8 processus, le 8ème étant "x-process", pour D, Li, Be, B). Jusqu'en 1957, 2 modèles cosmologiques: - - Big Bang: - expansion de l'univers: OK - origine des éléments (sauf les plus légers): problème - - état stationnaire: création continue de matière problème pour expliquer cette création continue, l'expansion, les galaxies...

46

47 SAD

48 Le diagramme de Hertzsprung-Russell L'évolution stellaire

49

50 Technétium 99 Tc fabriqué par le processus s - radioactif si une étoile a du Tc, alors elle est en train de fabriquer des éléments par le processus s Processus s: des preuves

51 étoiles S N=50: Sr,Y,Zr Processus s: des preuves

52 Étoiles à baryum N=82: Ba,La,Ce

53

54 Prédiction du processus s « Le processus s est plus efficace à faible métallicité » (Goriely & Mowlavi 1999) atomes de fer atomes d'hydrogène atomes de fer atomes d'hydrogène Métal: tout élément susceptible d'être produit dans une étoile. Métallicité: quantité de métaux (par ex: fer) présents dans l'objet étudié. ( ) Étoile Soleil = [Fe/H] Exemple: [Fe/H] = -1: l'étoile a 10 fois moins de métaux que le soleil [Fe/H] = -2: l'étoile a 100 fois moins de métaux que le soleil log

55 Que nous apprend la métallicité ? Tous les métaux sont produits au coeur d'étoiles A la fin de sa vie, l'étoile disperse les métaux produits au cours de sa vie dans l'espace interstellaire

56 Nuages sombres moléculaires Proto-étoiles Nouvelle étoile Cette matière « processée » se retrouve dans les nuages interstellaires à partir desquels se reforment de nouvelles étoiles

57 Dans un système fermé, comme notre Galaxie, les étoiles avec une métallicité plus faible (petit [Fe/H]) seront plus vieilles que les étoiles de métallicité plus grande (grand [Fe/H]) Relation âge-métallicité Donc chaque génération d'étoiles est enrichie en métaux crées par les générations précédentes d'étoiles

58 Prédiction du processus s « Le processus s est plus efficace à faible métallicité » (Goriely & Mowlavi 1999) A faible métallicité, les étoiles enrichies en éléments s doivent contenir beaucoup de plomb Très faible métallicité Métallicité solaire Plomb N=50 N=82 N=126 Faible métallicité N=50: Sr,Y,Zr N=82: Ba,La,Ce N=126: Pb,Bi

59 A la recherche de bonnes candidates A la recherche d'étoiles. enrichies en éléments s. de faible métallicité Étoiles AGB ET Problème: on ne connaît pas d'étoile AGB de faible métallicité... A faible métallicité, les étoiles enrichies en éléments s doivent contenir beaucoup de plomb Idée: étoiles CH. étoiles de faible métallicité ([Fe/H] ~ -1). étoiles enrichies en éléments s Ce ne sont pourtant pas des étoiles AGB: elles sont trop peu lumineuses Dès lors, pourquoi sont-elles enrichies en éléments s ? ET Candidates idéales pour tester la prédiction théorique

60 Les étoiles CH Étoiles binaires polluées par de la matière éjectée, par le passé, par leur compagnon qui était alors une étoile AGB Vue d'artiste

61 Les étoiles CH ont été polluées par une AGB de faible métallicité Elles permettent donc de tester le processus s Il suffit de rechercher du plomb dans les étoiles CH Demande de temps de télescope à l'ESO (Observatoire Européen austral)

62 L'observatoire de La Silla (Chili)

63 Le télescope de 3m60 équipé du spectrographe CES (Coude Echelle Spectrograph)

64 Spectres réduits au télescope

65 Au retour de mission, - réduction soignée des images CCD - analyse des spectres: détermination de l'abondance de plomb par synthèse spectrale au travers d'un modèle d'atmosphère adapté.

66 Comparaison avec les modèles de nucléosynthèse Détermination de l'abondance de plomb par synthèse spectrale

67

68 Efficacité du processus s en fonction de la métallicité 2001

69 Efficacité du processus s en fonction de la métallicité 2002 La fin de l'histoire? Non!

70 Efficacité du processus s en fonction de la métallicité 2003

71 Les modèles actuels de nucléosynthèse ne permettent pas d'expliquer toutes les observations Les abondances dérivées des observations sont entachées de grandes barres d'erreur Poisons neutroniques, rotation, 3D,... Des observations plus nombreuses sont requises pour dégager des tendances Spectres UVES du Very Large Telescope Petite conclusion Pas vraiment de conclusion...

72 « Comment en un plomb vil l'or pur s'est-il changé ? » Racine, J. : 1691, Athalie, III, 7 Conclusion plus générale Poussières d'étoiles...

73 Fin

74 La nucléosynthèse primordiale (Big Bang) production de deuterium (1%), He (25%), Li, Be a partir des protons primordiaux La nucléosynthèse par spallation (milieu interstellaire) production de Li, Be, B La nucléosynthèse non explosive Associée aux cycles de production d'énergie combustion de H (cycle pp, CNO) combustion de He (réaction triple alpha) combustion de C, O, Ne, Mg, Si production de la majorité des nucléides plus légers que Fe Les grandes classes de processus de nucléosynthèse Auxiliaire aux cycles de production d'énergie processus s (« slow ») -> production d'éléments plus lourds que le fer La nucléosynthèse explosive Lors des explosions de type novae (cycle CNO chaud) Lors des explosions de type supernovae combustion H, He, C, O, Ne, Mg, Si processus r (« rapid ») -> production d'éléments plus lourds que le fer processus p (photo-émissions de neutrons) -> production d'éléments plus lourds que le fer

75 La nucléosynthèse primordiale (Big Bang) production de deuterium (1%), He (25%), Li, Be a partir des protons primordiaux La nucléosynthèse par spallation (milieu interstellaire) production de Li, Be, B La nucléosynthèse non explosive Associée aux cycles de production d'énergie combustion de H (cycle pp, CNO) combustion de He (réaction triple alpha) combustion de C, O, Ne, Mg, Si production de la majorité des nucléides plus légers que Fe Les grandes classes de processus de nucléosynthèse Auxiliaire aux cycles de production d'énergie processus s (« slow ») -> production d'éléments plus lourds que le fer La nucléosynthèse explosive Lors des explosions de type novae (cycle CNO chaud) Lors des explosions de type supernovae combustion H, He, C, O, Ne, Mg, Si processus r (« rapid ») -> production d'éléments plus lourds que le fer processus p (photo-émissions de neutrons) -> production d'éléments plus lourds que le fer

76

77 OBAFGKM RNS Oh Be A Fine Guy/Girl Kiss Me Only Boys accepting Feminism Get Kissed Meaningfully Official Bureaucrats At Federal Government Kill Many Researchers' National Support Observationalists Basically Are Fine Generous Kind Men (Really Not Sexist) Oh backward Astronomer, Forget Geocentricity; Kepler's Motions Reveal Nature's Simplicity Only Boring Astronomers Find Gratification Knowing Mnemonics

78

79 Processus r et s


Télécharger ppt "Les étoiles au plomb Cauchemar d'alchimiste, Rêve d'astronome « Comment en un plomb vil l'or pur s'est-il changé ? » Racine, J. : 1691, Athalie, III, 7."

Présentations similaires


Annonces Google