La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Lois et principes psychomoteurs; modélisation prédictive.

Présentations similaires


Présentation au sujet: "Lois et principes psychomoteurs; modélisation prédictive."— Transcription de la présentation:

1 Lois et principes psychomoteurs; modélisation prédictive

2 Capacités motrices (Moteur: quelque chose qui crée le mouvement)

3 Les capacités motrices dans les tâches de pointage Pourquoi étudier les tâches de pointage? Les souris sont couramment utilisées Souvent, les souris sont utilisées pour tout sauf saisir le texte On peut exploiter ce qui est déjà connu par les experts en théories psychomotrices

4 Exercise: tâche de pointage réciproque Un cobaye volontaire?

5 Lexpérience de Fitts (1954): pointage 1D

6 La loi de Fitts Au départ, utilisé pour modéliser le pointage réciproque en 1D (Fitts 1954) Par la suite, utilisé pour modéliser le pointage discret ("un coup") en 1D (Fitts et Peterson 1964) Des centaines (milliers?) détudes ont confirmé la loi avec différentes conditions Demeure un des seuls modèles mathématiques robustes à la disposition des concepteurs dinterfaces et des chercheurs en IHM

7 Mouvement rapide de pointage vers une "cible" (exemple: bouton, widget, etc.) T: temps moyen de mouvement, en secondes (ou millisecondes); sappelle aussi MT (« mouvement time ») D: distance au centre de la cible; sappelle aussi A (amplitude de mouvement) W: largeur (« width ») de la cible; en 1D, W est mesuré le long de laxe du mouvement Le logarithme (en bits); sappelle aussi indice de difficulté ID a (en s) et b (en s/bit): de constantes qui sont mesurées de façon expérimentale, et qui varient avec la nature de la tâche de pointage (1D, 2D, souris, stylet, main, pied, etc.) IP = 1/b (en bits/s): indice de performance, ou largeur de bande D W Curseur (ou doigt, etc.) Cible Loi de Fitts: T = a + b log 2 (D/W + 1) Pointage 1D (cible infiniment grande):

8 Si la cible est un rectangle avec hauteur H et largeur L, on peut définir W = min(H,L) pour léquation de Fitts. Ceci donne une bonne approximation. Toutefois, une cible de 10x1 cm sera plus facile à acquérir quune cible de 2x1 cm, quelque soit la direction de mouvement. Si la cible est un carré de largeur L, ou un cercle de diamètre L, on peut définir W = L Attention: les valeurs de a et b ne seront plus les mêmes en 2D quen 1D D L Curseur (ou doigt, etc.) Cible Loi de Fitts: T = a + b log 2 (D/W + 1) Pointage 2D: H

9 Loi de Fitts (mouvement rapide de pointage) A W Curseur Cible

10 Loi de Fitts Même ID Même difficulté Cible 1 Cible 2

11 Loi de Fitts ID plus petit Plus facile Cible 2 Cible 1

12 Loi de Fitts ID plus grand Plus difficile Cible 2 Cible 1

13 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * MT (secondes) ID (bits) log 2 (D/W + 1) a b = pente IP = 1/b ID = indice de difficulté IP = 1/b = indice de performance

14 Plus de 50 ans détudes Référence: I. S. MacKenzie. Fitts Law as a research and design tool in human computer interaction. Human Computer Interaction, 1992, Vol. 7, pp

15 Remarques IP donne une mesure de la vitesse dun membre ou dun périphérique, indépendant des cibles La souris est presque optimale ! IP(souris) 10.4, IP(main) 10.6 (quoique ces valeurs varient dune étude à lautre) Les membres extrêmes et plus petits sont plus rapides – IP(yeux) > IP(doigts) > IP(bras) > IP(jambes)

16 La loi de Fitts modélise Les mouvements réciproques ("aller-retour") et discrets ("un coup") en 1D ou en 2D et sapplique aux situations suivantes: Mouvements des mains et des pieds Mouvements dans lair, sous leau, sous un microscope Empoigner, pointer du doigt, lancer un dard Souris, boules de commande, manettes, pavé tactiles, casques avec viseurs, appareils oculométriques Contrôle de position et contrôle de vitesse Mouvements linéaires et mouvements de rotation (exemple: tourner un bouton sur une chaîne stéréo pour ajuster le volume) Enfants préscolaires, gens retardés mentalement, gens sous leffet de drogues Dans chaque cas, les valeurs de a et b sont différentes !

17 Remarques concernant la loi de Fitts Compromis vitesse/précision (« speed/accuracy tradeoff ») – Les cibles plus proches ou plus grosses peuvent être sélectionnées plus rapidement Temps invariant avec des changements déchelle – Cest le rapport D/W qui compte On peut utiliser la loi de Fitts pour – Prédire le temps de mouvement (si a, b connus) – Comparer deux périphériques (comparer leurs IP) – Nous guider dans la conception. Exemple: ne pas avoir de cibles trop petites!

18 Cibles excessivement petites W = 3 pixels, D 500 pixels donc ID 5.7 bits Mais avec W = 10, D = 500, ID = 2.7 bits (soit moins de la moitié du temps!) Leçon: nimposez pas un W trop petit!

19 Exemple dans MS Explorer Cibles pour voir/cacher le contenu dun dossier Dans MS Windows XPDans MS Windows Vista

20 Évitez davoir des petites cibles Quelques endroits très faciles à acquérir avec le curseur sont – Le pixel en dessous du curseur (exemple: un menu contextuel au lieu dun menu déroulant) – Les 4 coins de lécran, et les 4 bordures de lécran (exemples: le menu dapplication dans Mac OS; le menu de démarrage dans MS Windows) Quel est W dans ces cas? Quarrive-t-il sil y a tampon de 1-2 pixels entre le menu et la bordure de lécran? (Comme dans MS Windows 95, si je me souviens bien.)

21 Barre de défilement de NeXT Question: Pourquoi a-t-on mis les boutons un à côté de lautre ? Réponse: Pour réduire D – Si D W, alors ID 1 bit seulement

22 Les boîtes de dialogue dans « xv » Montrent une autre façon de réduire D (à zero!)

23 Clic …

24

25

26 Clic !

27 Split Menus (Sears et Shneiderman, 1992)

28 « Area cursors » Le « hotspot » dun curseur normal est juste un pixel Le hotspot dun « area cursor » est plus gros, ce qui facilite la sélection de petites cibles (Kabbash et Buxton 1995; Hoffmann 1995; Worden et al. 1997) – Dans le cas dun « area cursor », W = taille du curseur + taille de la cible Curseur normal « hotspot » Des petites cibles « hotspot » « Area cursor »

29 Bubble Cursor (Grossman et Balakrishnan 2005) Un « area cursor » dynamique: on change la grosseur du « hotspot » de façon dynamique pour toujours avoir une cible, la cible la plus près, en dessous du hotspot. Remarque: chaque cible correspond en effet à une cellule dans un diagramme de Voronoï, alors lespace dentrée est complètement couvert de cibles. Il ny a pas despace gaspillé. (vidéo)

30 Miniature keyboards for 2-thumb typing: Wheres the best place for the spacebar ?

31 Using Fitts Law to model 2-thumb typing Take into account size and spacing between buttons Assume thumbs alternate in typing whenever possible (to maximize speed) Given a corpus of text, compute frequencies of sequences of letters Weigh the time to type in each sequence by its frequency Arrive at (upper bound for) average typing speed MacKenzie and Soukoreffs (2002) estimate: 60.7 wpm (words per minute) ! Assumes spacebar in centre. If spacebar is on left or right, estimate drops to 49.9, 56.5 wpm respectively.

32 Mouvement rapide pour passer entre deux points, sans faire attention à larrêt. Autrement dit, on doit faire juste attention à la direction de notre mouvement (tandis que dans le pointage normale Fitts 1D, on fait juste attention à la position en x) Se modélise avec la même équation que la loi de Fitts ! (Accot et Zhai 1997) Dans léquation, W est défini comme la largeur de la but; W est donc mesuré dans la direction perpendiculaire à laxe du mouvement (contrairement à la loi de Fitts normale en 1D) Attention: les valeurs de a et b ne seront plus les mêmes ici que dans les tâches de pointage normales D Curseur But Passage à travers un but W

33 Pour modéliser les menus ci-bas, on avait dit que W est effectivement infini Par contre, si on les modélise avec une tâche de passage de but, quarrive t-il à W ?

34 La loi de Hick-Hyman (Hick 1952; Hyman 1953) Temps de réaction = a + b log 2 (N+1), où – N est le nombre de choix – a, b sont des constantes mesurées de façon expérimentale (et nont pas les mêmes valeurs que dans la loi de Fitts) – log 2 (N+1) est le nombre de bits exprimés par le choix Exemple: N ampoules, N boutons; lorsquune ampoule sallume on doit appuyer le bouton correspondent le plus vite possible Exemple: lutilisateur connais le choix quil veut, et ouvre un menu quil na jamais vu avant, qui contient N choix en ordre alphabétique Contre-exemple: lutilisateur connais le choix quil veut, et ouvre un menu avec lequel il est déjà familier Contre-exemple: un menu de N choix, que lutilisateur na jamais vus auparavant, en ordre alléatoire – le temps sera linéaire

35 Question Selon la loi de Hick, est-il mieux davoir des menus hiérarchiques de 2x2x2 choix, ou un menu simple de 8 choix? 2x2x2 choix: 3( a + b log 2 (2+1) ) = 3a + b log 2 (3x3x3) = 3a + b log 2 (27) 8 choix: a + b log 2 (8+1) = a + b log 2 (9) Selon la loi de Hicks (et selon des études), des menus peu profonds sont généralement mieux Quarriverait-t-il si on applique la loi de Fitts pour modéliser le temps de pointage dans le menus?

36 Using these laws to predict performance Consider Hicks law, Fitts law, & goal passing Which will be faster on average? – pie menu (bigger targets & less distance)? Today Sunday Monday Tuesday Wednesday Thursday Friday Saturday Pop-up Linear Menu Pop-up Pie Menu

37 Révision

38 Comment calculer ID ? Comment trouver a et b ? Peut-on comparer deux cibles si a et b sont inconnus ?

39 Mettez en ordre croissant de difficulté (bordure de lécran) f: D=2; cible de 2x2 e: D=4; cible de 2x2 g: D=2; cible de 1x1 h: D=2; cible de 2 a: D=2; cible de 2x2 b: D=2; cible de 1x2 c: D=1; cible de 1x1 d: D=2; cible de 2x1

40 Supposons quon modélise toutes les cibles avec des tâches de pointage de Fitts, même pour h, et non avec des tâches de passage de but (Pourquoi?) Calculons le rapport D/W pour chaque cible: – c: 1/1 = 1 – a: 2/2 = 1 – f: 2/2 = 1 (remarque: mouvement vertical) – g: 2/1 = 2 – e: 4/2 = 2 – b et d: 2/1 = 2 (remarque: ce sont des rectangles) – h: 2/ = 0 Une première réponse: h, ensuite {a, c, f}, ensuite {b, d, e, g} Une meilleure réponse: – Supposons que les mouvements verticals sont légèrement plus difficiles à effectuer – Supposons quun rectangle de LxH, LH est légèrement plus facile à sélectionner quun carré de largeur min(L,H) – Alors: h, ensuite {a, c}, ensuite f, ensuite {b, d}, ensuite {e, g}


Télécharger ppt "Lois et principes psychomoteurs; modélisation prédictive."

Présentations similaires


Annonces Google