La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

1 Impact des phénomènes de surface sur la TTL P. Ricaud, B. Barret, J.-L. Attié, E. Le Flochmoën Laboratoire d’Aérologie, Toulouse, France H. Teyssèdre,

Présentations similaires


Présentation au sujet: "1 Impact des phénomènes de surface sur la TTL P. Ricaud, B. Barret, J.-L. Attié, E. Le Flochmoën Laboratoire d’Aérologie, Toulouse, France H. Teyssèdre,"— Transcription de la présentation:

1 1 Impact des phénomènes de surface sur la TTL P. Ricaud, B. Barret, J.-L. Attié, E. Le Flochmoën Laboratoire d’Aérologie, Toulouse, France H. Teyssèdre, V.-H. Peuch Centre National de Recherches Météorologiques, Toulouse, France

2 2 TTL (Tropical Tropopause Layer) TTL : ~14  ~18 km 2 idées fortes : Transport ascendant dans systèmes convectifs jusqu’à la base de la TTL puis transport lent par échauffement radiatif jusque dans la basse stratosphère (Sherwood and Dessler, 2000) et transport horizontal sur de longues distances (Gettelman et al., 2002) « Fontaine stratosphérique » au Pacifique Ouest corrélée au minimum de température (Newel) avec des nuages convectifs plus élevés là où l’OLR est la plus faible 1 idée émergente Overshooting jusqu’à 18 km (Liu and Zipser, 2005) principalement au-dessus des continents (surtout l’Afrique) avec une forte variation diurne (plus intense l’après-midi)

3 3 Aim Diagnose tropospheric and stratospheric processes that play a key role in the distribution of long-lived species measured by space-borne sensors in the Tropical Tropopause Layer (TTL) Layer between the tropopause and 380 K 2 mechanisms are widely accepted Convection upto the base of the TTL around 14 km followed by a slow uplift through radiative heating (Sherwood and Dessler, 2000) Overshooting above continental convective systems (Danielsen, 1993) Focus on a weakly documented period, namely the March-April- May (MAM) period Comparisons with 3D CTM Troposphere-Stratosphere MOCAGE

4 4 Data sets Satellite data Odin: N2O at 17 km HALOE CH4 and H2O at 17 km MOPITT CO at 850 and 150 hPa Fire counts from TRMM Outgoing Longwave Radiation from AVHRR Model data 3D CTM MOCAGE: N2O, CH4, CO, H2O, T/P, Flux Run for climate studies 5°x5° Troposphere-stratosphere ECMWF Temperature & Winds from ECMWF

5 5 Outgoing Longwave Radiation (OLR) Strong convective outflow is defined by low values of OLR (< 220 W.m-2) Western Africa Western Pacific Indonesia South America

6 6 Tropical Tropopause Layer (TTL) 17 km ~ 370 K ~ 100 hPa 15 km ~ 150 hPa High values of N2O, CH4 and CO over Western Africa, Indonesia and South America induced by strong convective outflows Low values of Western Pacific Overshootings above 14 km (Liu and Zipfser, 2005): Africa, Indonesia & S. America From Liu and Zipfser, JGR, 2005

7 7 Overshootings Liu and Zipser, JGR, 2005 OPF : Overshooting Precipitation Features

8 8 Variation diurne OPF Liu and Zipser, JGR, 2005 OPF : Overshooting Precipitation Features

9 9 MOCAGE: 15 & 17 km N2O CH4 CO Vertical Flux

10 10 Tropospheric Processes Fire pixels in Western Africa (onset of the African monsoon), and Northern South America Emissions of CO at 850 hPa associated with the biomass burnings From IPCC [2001], emissions from biomass burning represent 30%, 10% and 1% of total emissions for CO, CH4 and N2O

11 11 The H2O distribution Dehydrated area at 17 km over Africa (HALOE & MOCAGE) associated with strong convective outflow Lows in Temperature over Africa < km < km HALOE MOCAGE ECMWF TEMPERATURE

12 12 MOCAGE AfricaIndonesiaW Pacific S America CO N2O CH4 EQUATORIAL BAND: 10°S-10°N 3 sources of CO: Africa, Indonesia & South America 2 sources of CH4: Africa & Indonesia, but none in South America None of N2O (as expected) Lows of H2O at 17 km associated with Lows of Temperature below and convection over Africa and South America Convective outflows stop: 14 km over S. America 17 km over W. Africa & Indonesia Altitude 0 km 20 km H2O Anom Temp Anom Longitude OLR

13 13 Transports dans la TTL

14 14 Synthesis In MAM , tropospheric air masses characterized by high concentrations of CO, CH4 and N2O are uplifted into the top of the TTL at 17 km by strong continental convective systems over Western Africa, Indonesia and Northern South America The emission of CO and CH4 associated with biomass burning modifies even more the distribution of these species above Western Africa and Northern South America Over Western Pacific, the absence of long-lived species local maxima demonstrates that convective processes do not uplift rapidly tropospheric air masses into the lower stratosphere Over Western Africa, the rapid vertical outflows coincident with low temperatures are also responsible for a more intense dehydration of the lower stratosphere than elsewhere The 3D CTM MOCAGE reproduces almost all of the features except the maxima over South America: sources of CH4 and/or convection (?)

15 15 Projets Très court terme : Jeux de données de CO dans l’UTLS provenant de sondeurs au limbe (AURA/MLS, Odin/SMR) Assimilation avec MOCAGE-PALM Court Terme Rajouter les jeux de données de CO troposphérique provenant de sondeurs au nadir (MOPITT et AIRS) Puis rajouter METOP/IASI CO


Télécharger ppt "1 Impact des phénomènes de surface sur la TTL P. Ricaud, B. Barret, J.-L. Attié, E. Le Flochmoën Laboratoire d’Aérologie, Toulouse, France H. Teyssèdre,"

Présentations similaires


Annonces Google