La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

1 ÉTUDE EXPÉRIMENTALE ET MODÉLISATION DES PERTES THERMIQUES PARIÉTALES LORS DE LINTERACTION FLAMME–PAROI INSTATIONNAIRE Bastien Boust Thèse de Doctorat.

Présentations similaires


Présentation au sujet: "1 ÉTUDE EXPÉRIMENTALE ET MODÉLISATION DES PERTES THERMIQUES PARIÉTALES LORS DE LINTERACTION FLAMME–PAROI INSTATIONNAIRE Bastien Boust Thèse de Doctorat."— Transcription de la présentation:

1 1 ÉTUDE EXPÉRIMENTALE ET MODÉLISATION DES PERTES THERMIQUES PARIÉTALES LORS DE LINTERACTION FLAMME–PAROI INSTATIONNAIRE Bastien Boust Thèse de Doctorat encadrée par Marc Bellenoue et Julien Sotton au Laboratoire de Combustion et Détonique dans léquipe Combustion dans les Moteurs Bourse de Docteur–Ingénieur cofinancée CNRS – RENAULT

2 2 Plan de lexposé Position du problème Étude du coincement de flamme laminaire Mesures couplées de flux thermique et distance de coincement Modélisation de la distance de coincement Validation du modèle de distance de coincement Mesures de flux thermique durant la combustion en enceinte sphérique Simulation de la combustion dans une enceinte sphérique Extension du domaine de validité du modèle Étude des pertes thermiques en régime turbulent Aérodynamique en proche paroi Influence de lécoulement sur les pertes thermiques Évaluation comparée des modèles de pertes thermiques Amélioration du calcul de la vitesse de frottement u* Intégration des effets cinématiques sur la couche limite thermique Conclusions – Perspectives Étude expérimentale et modélisation des pertes thermiques pariétales lors de linteraction flamme–paroi instationnaire

3 Position du problème 3 Importance des pertes thermiques dans les chambres de combustion Enjeu scientifique : Condition aux limites thermique dans les calculs de combustion Enjeu technologique : Prévision des points chauds & anomalies de combustion dans les moteurs Exemple : réduction de la cylindrée (downsizing) compétition rendement / pertes Enjeu énergétique : Les pertes aux parois sont 20–30% du bilan énergétique dun moteur Elles sont accentuées par : la charge ( pression) le régime ( vitesse, turbulence) la richesse ( température) etc… Paramètres difficiles à dissocier et à mesurer dans un moteur

4 Position du problème 4 Visualisation dune combustion turbulente dans une chambre de combustion Strioscopie rapide Méthane-air Φ=0,7 Allumage : fin dinjection images/s

5 Position du problème 5 Distinction de linteraction flamme–paroi / gaz brûlés–paroi Analogie combustion monocoup / cycle moteur Combustion à volume constant durant 18 ms 60 DV Refroidissement durant 120 DV 36 ms Interaction flamme–paroi 5–10% du bilan énergétique On peut découpler en partie les phénomènes en vue dimposer les conditions aux limites du calcul : Phase réactive : interaction flamme–paroi c.l. chimique & thermique Phase inerte : interaction gaz brûlés–paroi c.l. thermique Détente Compression PMH Interaction flamme–paroi Interaction gaz brûlés–paroi PMB

6 Position du problème 6 Interaction flamme–paroi : la phénoménologie Mécanismes de linteraction, daprès [Bruneaux, 1996] Contours de flamme turbulente daprès [Sotton, 2003] Le front de flamme turbulent est relaminarisé au voisinage de la paroi Il est pertinent détudier le coincement de flamme en régime laminaire Flamme Paroi Écoulement Accélération des gaz par diminution de la densité Augmentation de la viscosité des gaz brûlés La turbulence plisse, convecte, étire la flamme Réduction des échelles de turbulence Production dénergie cinétique turbulente Flux de chaleur pariétal Vitesse de consommation diminuée par les pertes thermiques Limitation géométrique temps

7 Position du problème 7 Nombre de Peclet basé sur la distance de coincement : δ q : Distance de coincement δ : Épaisseur de flamme laminaire Flux thermique adimensionné : Q w : Flux thermique pariétal Q : Puissance de flamme laminaire Étirement du front de flamme : R c : Rayon de courbure local V g : Vitesse des gaz Géométries de coincement Frontal ( 0) : Pe 3–4 Latéral (κ 0) : Pe 6–7 En cavité (κ 0) : Pe 15–40 Interaction flamme–paroi : les paramètres VFVF VgVg q Coincement latéral q Coincement en cavité q Coincement frontal

8 Position du problème 8 Fergusson & Keck, 1977 : Hypothèse : problème de conduction stationnaire λ : conductivité des gaz frais lors du coincement ΔT : gradient thermique à travers les gaz frais Non valable pour P>1atm [Sotton et al., 2005] Modèle adiabatique : Hypothèse : idem + flamme adiabatique [Westbrook et al., 1981] : Corrélation issue de la simulation numérique 1D Pe b : nombre de Peclet des gaz brûlés Valable pour P=1–40atm Pas de modèle satisfaisant : limitations fortes, empirisme Interaction flamme–paroi : les modèles de distance de coincement

9 Position du problème 9 Convection naturelle : [Nusselt, 1923] Convection forcée : [Woschni, 1967] Loi de paroi basée sur la couche-limite cinématique : [Han & Reitz, 1997] Hypothèses restrictives : compatibles aux conditions moteur ? Loi de paroi basée sur la couche-limite thermique : [Rivère, 2005] Théorie cinétique des gaz : conduction = rebond des molécules de gaz sur la paroi Valable en régime laminaire / turbulent car il existe toujours une c.l. thermique Interaction gaz brûlés – paroi : les modèles de flux thermique

10 Position du problème 10 Chambres de combustion Mise à profit des qualités propres à chaque dispositif : Accès optiques diagnostics Opaque haute pression Aérodynamique interne Instrumentation (fluxmètres) Chauffage de parois Intérêt de ces chambres : Conditions initiales maîtrisées Fluctuations cycliques réduites

11 Position du problème 11 Conception dun dispositif expérimental pour étudier linteraction gaz brûlés – parois Objectifs scientifiques Générer de conditions représentatives des moteurs Caractériser linteraction par mesures couplées : flux thermique & champ aérodynamique Solutions technologiques Fonctionnement monocoup : injection de prémélange + allumage par étincelle Aérodynamique structurée générée par le remplissage via une section sonique Hublots en silice UV sur 3 faces pour les diagnostics optiques Analogie aux conditions moteur Combustion instationnaire Volume constant (PMH) Pertes thermiques équivalentes Simulation expérimentale de linteraction gaz brûlés – paroi dans les moteurs Q w ~1MW/m² P>10bar V>10m/s q>2m/s N>30tr/s

12 Étude du coincement de flamme laminaire 12 Démarche Étudier linteraction flamme–paroi en configuration simplifiée Légitime car la flamme turbulente se laminarise aux parois Fluctuations cycle-à-cycle très réduites par rapport au cas turbulent Fournir un outil simple pour évaluer directement la distance de coincement Modélisation de la distance de coincement en fonction du flux Validation du modèle à partir de mesures directes (basse pression) Simulation de la distance de coincement et du flux Validation de la simulation à partir de mesures de flux thermique (haute pression) Extension du domaine de validité du modèle par la simulation Expérience (BP) δ q, Q w Simulation (HP) δ q, Q w Modèle δ q (Q w ) ValidationExtension

13 Étude du coincement de flamme laminaire 13 Mesures couplées de flux thermique et distance de coincement Mesure locale et simultanée de Q w et δ q Q w : par thermocouple de surface δ q : par visualisation directe Faible étirement en coincement frontal et latéral Lécoulement est généré par la flamme Faible étirement de courbure : 2S u /R < 30s -1, négligeable devant létirement susceptible déteindre une flamme : 1000–2000s -1 [Bradley et al., 1996] Coincement frontalCoincement latéral Obstacle instrumenté Fluxmètre

14 Étude du coincement de flamme laminaire 14 Modélisation de la distance de coincement : à partir du taux de réaction Équation de [Potter & Berlad, 1955] Intégration 1D de léquation de la chaleur La constante dintégration k est déterminée par comparaison aux mesures Q w – δ q Taux de réaction [Westbrook & Dryer, 1981] Chimie simple, adaptée à une formulation directe de w Comparaison modèle – mesure : Leffet de pression et de richesse est bien simulé Inconvénient : k est une inconnue à déterminer

15 Étude du coincement de flamme laminaire 15 Modélisation de la distance de coincement : à partir dun bilan énergétique Hypothèses : Coincement thermique : faible étirement Premier principe : Q r = Q – Q u Coincement lorsque Q w = Q u Condition aux limites instantanée : Système : Formulation du modèle : Équation sans coefficient Q w < Q u Q w > Q u t QwQw δqδq TwTw T ad x T t = t q : coincement t < t q : propagation Gaz brûlés δFδF QrQr QuQu QwQw TFTF

16 Étude du coincement de flamme laminaire 16 Validation du modèle de distance de coincement Comparaison modèle – mesures Coincement frontal : étirement nulCoincement latéral à faible étirement Comparaison aux modèles antérieurs Compatible asymptotiquement avec : mais Pe est faible (3–7) Utilise léquation de [Fergusson & Keck, 1977] mais la température de flamme T F (inconnue) est éliminée par substitution

17 Étude du coincement de flamme laminaire 17 Mesures de flux thermique durant la combustion en enceinte sphérique Mesure de P et Q w en chambre sphérique Configuration fondamentale pour le coincement frontal Atteindre des pressions représentatives des moteurs Phénomènes de 1 er ordre : Propagation de flamme Conduction : gaz frais / paroi Rayonnement : gaz brûlés / paroi Effets de 2 nd ordre : poussée dArchimède déformation de la « sphère » post-oxydation des gaz frais présence des électrodes… Peu pertinents pour la combustion dans les moteurs Non simulés par le calcul 1D sphérique CH 4 -air Φ=1

18 Étude du coincement de flamme laminaire 18 Simulation de la combustion dans une enceinte sphérique Code de combustion par tranches : Combustion isochore = Σ { Combustion isobare + Compression isentropique } Calcul déquilibre chimique à 8 espèces : H 2 O, CO 2, O 2, N 2, H 2, CO, NO, OH Modèles phénoménologiques : Vitesse de flamme étirée : Pertes conductives Pertes radiatives : [Leckner, 1972] Modèle nodal de diffusion thermique entre les tranches (réseau R,C) Critère de coincement [Westbrook et al., 1981] : r1r1 r2r2 rNrN T1T1 T2T2 (m.c P ) 1 (m.c P ) 2 G2G2 (m.c P ) N-1 GNGN (m.c P ) N TNTN T N-1 G N+1 TwTw h

19 Étude du coincement de flamme laminaire 19 Simulation de la combustion dans une enceinte sphérique CH 4 -air Φ=1 Restitution des pertes thermiques aux parois : Impact du modèle de pertes par conduction Échec des modèles empiriques Choix du modèle de [Rivère, 2005] Impact du rayonnement dans les pertes La paroi est assimilée à un corps noir, α = 1 En combustion laminaire, le rayonnement peut avoir une importance comparable à la conduction Simulation sensible & robuste aux changements : Pression, température (gaz & paroi) Richesse Carburant Chambre de combustion

20 Étude du coincement de flamme laminaire 20 Extension du domaine de validité du modèle Intérêt de la simulation Accord avec les mesures de flux Accord avec le modèle : bifurcation prévue par le modèle & la simulation Extension du domaine de validité du modèle aux pressions moteur Outil prédictif pour δ q

21 Étude des pertes thermiques en régime turbulent 21 Il faut encore affiner la description de linteraction gaz brûlés – paroi Combustion turbulente Dynamique de la flamme et de lécoulement Estimation des pertes à laide de lois de paroi [Han & Reitz, 1997] Exemple : combustion de prémélange CH 4 0,2 MPa Ф=0,7 Combustion laminaire La flamme impose sa propre dynamique Bonne prédiction de linteraction flamme–paroi [Rivère, 2005] Bilan à mi-parcours

22 Étude des pertes thermiques en régime turbulent 22 Démarche Mettre en évidence et modéliser leffet de lécoulement sur les pertes… Déterminer les paramètres de premier ordre Évaluer et améliorer les modèles de pertes thermiques … en couplant plusieurs diagnostics localement et simultanément Capteur piézoélectrique Pression P Fluxmétrie par thermocouple de surface Flux thermique pariétal Q w PIV haute cadence (5 kHz) Vitesse densemble V Fluctuations turbulentes u, v w Énergie cinétique turbulente q² = (u²+v²+w²)/2 Échelles intégrales spatiale L x et temporelle L t Ensemencement minéral (ZrO 2 ) champ de vitesse dans les gaz frais et les gaz brûlés

23 Étude des pertes thermiques en régime turbulent 23 Dispositif expérimental Points de fonctionnement Injection de prémélange CH 4 –air sur 125ms 2 richesses : Ф=0,7 ou Ф=1 Allumage par étincelle après injection 2 phasages t*=125ms ou t*=155ms 4 régimes de combustion Mesures de PIV temporelle (5kHz) Globales (65×65mm) : N, V, q Locales (7×7mm) : V, q, L x, L t Plans orthogonaux pour vérifier : le caractère 2D de lécoulement v w Mesures de LDV (>50kHz) Fort taux dacquisition pour résoudre L t Injecteurs Électrodes Fluxmètres + Champs PIV x y z Fluxmètres + Champs PIV Central Latéral

24 Étude des pertes thermiques en régime turbulent 24 Décomposition triple du champ instantané U [Reuss et al., 1989] champ moyen Moyenne de cycle résolu ( LDV) Moyenne sur une fenêtre de 5ms Mouvement moyen U BF champ basse-fréquence Filtrage passe-bas (Hamming) du champ fluctuant [U – ], échelle de coupure : 4mm = Ø CFTM Fluctuations cycle-à-cycle U HF champ haute-fréquence Turbulence Adaptation du post-traitement à la PIV temporelle en proche paroi

25 Étude des pertes thermiques en régime turbulent 25 Aérodynamique en proche paroi Décroissance simultanée de V et q Épaississement du gradient pariétal : 0,350,85mm Isotropie de la turbulence… jusquà la combustion Hypothèse de Taylor… jusquà la combustion La compression: joue le rôle dun piston sur les structures en paroi participe à la relaminarisation

26 Étude des pertes thermiques en régime turbulent 26 Influence de lécoulement sur les pertes thermiques Évolution moyenne Les pertes thermiques dépendent au 1 er ordre de la pression (la masse volumique) Évolution instantanée V et q ont une influence en temps réel sur Q w il est difficile de séparer leurs effets respectifs Les pics de flux sont dus à des structures cohérentes (<1kHz) identifiées par DNS [Bruneaux, 1996] Évolution moyenne Instantané Injecteurs Électrodes Fluxmètre + Champ PIV x y z

27 Étude des pertes thermiques en régime turbulent 27 Influence de lécoulement sur les pertes thermiques Influence de lamplitude de vitesse (composante tangentielle V x ) Les pertes dépendent directement du module de la vitesse locale, à iso-paramètres La turbulence semble avoir un effet de 2 nd ordre comparé à la vitesse Séparation des phénomènes Conduction pure : en accord avec les mesures en coincement de flamme laminaire Advection des gaz : accroît les transferts conductifs Conduction Advection Injecteurs Électrodes Fluxmètre + Champ PIV x y z

28 Étude des pertes thermiques en régime turbulent 28 Influence de lécoulement sur les pertes thermiques Influence de la direction découlement (composante normale V y ) La composante normale V y a un effet considérable Il faut prendre en compte lincidence de lécoulement dans les modèles α Conduction VxVx VyVy Advection Incidence

29 Étude des pertes thermiques en régime turbulent 29 Évaluation comparée des modèles de pertes thermiques Comparaison sur une configuration académique, hors moteur Échec des corrélations empiriques 2 lois de paroi simulent correctement les mesures : [Han & Reitz, 1997] et [Rivère, 2005] Corrélations empiriquesLois de paroi

30 Étude des pertes thermiques en régime turbulent 30 Évaluation comparée des modèles de pertes thermiques Écoulement à incidence nulle Hypothèse de base des lois de paroi cinématiques Les lois de paroi donnent satisfaction Écoulement 3D en incidence Couche-limite ? Mise en défaut des lois de paroi cinématiques Amélioration sensible par le modèle de [Rivère, 2005] À lavenir : améliorer les modèles de pertes dans les écoulements avec incidence α [Han & Reitz, 1997][Rivère, 2005] –50%–25%

31 Étude des pertes thermiques en régime turbulent 31 Amélioration du calcul de la vitesse de frottement u* Exemple : modèle de [Han & Reitz, 1997] Calcul théorique, basé sur la mesure de q en 1 point Résolution de léquation de [Spalding, 1961] à partir du profil expérimental de V Plus dinformation dans un profil quen 1 point La simulation est meilleure à laide de léquation de couche - limite de [Spalding, 1961]

32 Étude des pertes thermiques en régime turbulent 32 Intégration des effets cinématiques sur la couche limite thermique Amélioration du modèle de [Rivère, 2005] Lénergie cédée à la paroi décroît avec lépaississement de la couche limite thermique Pas découlement :(validé) Écoulement laminaire : Écoulement turbulent : Extension du domaine de validité du modèle Essais moteur avec = 2–10m/s : Mesures locales dans la chambre : Raccordement laminaire – turbulent : Extension à V = 0–25m/s – Hors moteur V locale instantanée et non

33 Étude des pertes thermiques en régime turbulent 33 Conclusions Position du problème Besoin de modèles : distance de coincement & flux thermique Identification des phénomènes : interaction flamme–paroi / gaz brûlés – paroi Modélisation de la distance de coincement Validée par des mesures couplées distance de coincement – flux thermique Étendue à des pressions compatibles avec les conditions moteur Outil prédictif sans empirisme pour évaluer la distance de coincement Contribution au calcul des pertes thermiques Mesures couplées aérodynamique – flux thermique résolues dans lespace et le temps Identification des paramètres de premier ordre sur les pertes thermiques Amélioration dun modèle de pertes thermiques valable en régime laminaire & turbulent

34 Étude des pertes thermiques en régime turbulent 34 Perspectives Description de linteraction flamme–paroi Validation expérimentale du modèle de coincement : sondes dionisation Extension de la modélisation aux flammes étirées Généralisation au régime turbulent : relation flux – étirement – distance de coincement Simulation 1D : maillage de la zone de gaz frais, pour résoudre la température de flamme Prédiction des pertes thermiques en régime turbulent Adaptation des lois de paroi aux écoulements avec incidence Prise en compte de leffet propre de la turbulence sur les pertes thermiques à partir de la base de données disponible Adaptation au cas dune turbulence sans mouvement densemble

35 Étude des pertes thermiques en régime turbulent 35 Remerciements Marc Bellenoue Julien Sotton Sergei Labuda Afif Ahmed Jean-Pierre Rivère


Télécharger ppt "1 ÉTUDE EXPÉRIMENTALE ET MODÉLISATION DES PERTES THERMIQUES PARIÉTALES LORS DE LINTERACTION FLAMME–PAROI INSTATIONNAIRE Bastien Boust Thèse de Doctorat."

Présentations similaires


Annonces Google