Télécharger la présentation
La présentation est en train de télécharger. S'il vous plaît, attendez
Publié parBernardine Pasquet Modifié depuis plus de 10 années
1
Minimisation Techniques 1 Assimilation Algorithms: Minimisation Techniques Yannick Trémolet ECMWF Data Assimilation Training Course March 2006
2
Minimisation Techniques 2 4D Variational Data Assimilation
3
Minimisation Techniques 3 Incremental 4D-Var
4
Minimisation Techniques 4 Incremental 4D-Var
5
Minimisation Techniques 5 Incremental 4D-Var
6
Minimisation Techniques 6 The Outer Iterations
7
Minimisation Techniques 7 The Inner Iterations
8
Minimisation Techniques 8 Minimisation: Newton method
9
Minimisation Techniques 9 Minimisation: Newton method
10
Minimisation Techniques 10 Minimisation: Quasi-Newton method
11
Minimisation Techniques 11 Minimisation: Quasi-Newton method
12
Minimisation Techniques 12 Limited Memory Quasi-Newton
13
Minimisation Techniques 13 Minimisation: Steepest Descent
14
Minimisation Techniques 14 Minimisation: Steepest Descent The first step fully minimizes the function in the descent direction, but this is undone by subsequent steps. We want to avoid this.
15
Minimisation Techniques 15 Minimisation: Conjugate Gradient
16
Minimisation Techniques 16 Conjugate Gradient Convergence
17
Minimisation Techniques 17 Preconditioning
18
Minimisation Techniques 18 4D-Var Preconditioning
19
Minimisation Techniques 19 A case of poor convergence
20
Minimisation Techniques 20 Theoretical example
21
Minimisation Techniques 21 Theoretical example
22
Minimisation Techniques 22 A case of poor convergence
23
Minimisation Techniques 23 Hessian Preconditioning
24
Minimisation Techniques 24 Hessian Eigenvectors Preconditioning
25
Minimisation Techniques 25 4D-Var Eigenvalues Eigenvalue N =1 1 =3105.4 26 =492.75 Preconditioning reduces the condition number k= 1 / N from 3105.4 to 492.75
26
Minimisation Techniques 26 Conjugate Gradient and Lanczos Algorithm
27
Minimisation Techniques 27 Lanczos Algorithm
28
Minimisation Techniques 28 Lanczos Algorithm
29
Minimisation Techniques 29 Conjugate Gradient and Lanczos Algorithm
30
Minimisation Techniques 30 Superlinear Convergence
31
Minimisation Techniques 31 Rounding Error
32
Minimisation Techniques 32 CG Cost function reduction Quasi-Newton with inexact line searches Quasi-Newton with exact line searches Conjugate Gradient without orthogonalisation Conjugate Gradient with orthogonalisation
33
Minimisation Techniques 33 CG Gradient norm reduction Quasi-Newton with inexact line searches Quasi-Newton with exact line searches Conjugate Gradient without orthogonalisation Conjugate Gradient with orthogonalisation
34
Minimisation Techniques 34 4D-Var Cost function reduction Variational Quality Control
35
Minimisation Techniques 35 4D-Var gradient norm reduction Convergence is roughly twice as fast with Hessian preconditioning.
36
Minimisation Techniques 36 CG reduction of norm of gradient 0.05
37
Minimisation Techniques 37 Spectrum of preconditioned Hessian
38
Minimisation Techniques 38 RMS of T analysis increments
39
Minimisation Techniques 39 4D-Var Convergence
40
Minimisation Techniques 40 4D-Var Convergence
41
Minimisation Techniques 41 Summary
42
Minimisation Techniques 42
Présentations similaires
© 2024 SlidePlayer.fr Inc.
All rights reserved.