Intérêts de la culture cellulaire
L'industrie des biotechnologies s 'est développée de façon exponentielle ces dernières années. L'Europe compte à présent plus de 1500 entreprises actives. La croissance des biotechnologies s'appuie essentiellement sur une communauté technologique formée par les universités et les entreprises comme l'illustre l'éclosion des biovallées. La cellule eucaryote est au cœur de cet enjeu économique du 3° millénaire. En effet, elle constitue un véritable laboratoire vivant utilisé pour tester, par exemple, de nouveaux médicaments, ou encore dans des études plus fondamentales du fonctionnement et de la régulation d'un gène nouvellement identifié et de son produit. Elle représente aussi un moyen de transférer un ou plusieurs gènes dans l'organisme. De plus, la cellule peut être une usine productrice de molécules à usages thérapeutique et diagnostique. Enfin, les récents progrès accomplis dans la connaissance des cellules souches annoncent de nombreuses applications notamment en médecine régénératrice.
Moyen d ’étude in vivo de la cellule « en entier » Techniques générales de culture cellulaire Caractérisation de la différenciation cellulaire Mesure de la viabilité cellulaire et de la croissance Moyen d ’étude in vivo de la cellule « en entier » Clonage cellulaire Mesure du cycle cellulaire Transformation cellulaire expression génique
Mécanismes oncogéniques traitement ciblés Identification cellulaire (ontogénese) ex hématopoïèse Production de cellules /tissus à visée thérapeutique « ingénierie tissulaire » / thérapie régénératrice Méthode diagnostique
Mécanismes oncogéniques / traitements ciblés Ex les Leucémies Aigues (LA) Hémopathies malignes caractérisées par un blocage de l ’hématopoïèse, associé à l’accumulation de cellules anormales , les cellules blastiques pronostic très défavorable probabilité de guérison par chimiothérapie environ 30% sauf pour un type particulier : la leucémie aigue promyélocytaire (LAM3)
LAM3 Formation d ’un gène de fusion codant pour une protéine de fusion PML-RAR
Utilisation ATRA systématique dans le traitement d ’induction des LAM3 Différenciation d ’une lignée cellulaire promyélocytaire, en présence d ’Acide Rétinoïque Utilisation ATRA systématique dans le traitement d ’induction des LAM3
La leucémie myéloïde chronique (LMC) Hémopathie myéloïde chronique caractérisée par l’accumulation des cellules de la lignée granuleuse (myélémie) et le risque d ’évolution vers une LA (acutisation) t(9;22)
Leucémie myéloïde chronique
Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor Blood, Vol. 96 No. 3 (August 1), 2000 Hematologic and cytogenetic responses to imatinib mesylate in chronic myelogenous leukemia N Engl J Med. 2002 Feb 28
Progéniteurs différenciés Étude de l ’hématopoïèse Progéniteurs différenciés -cellules engagées dans une voie de différenciation régulée par des facteurs de croissances -pas d ’autorenouvellement -prolifération++ CSH Totipotentes -autorenouvellement -différenciation capacité de générer l’ensemble des cellules du sang périphérique Précurseurs Morphologiquement identifiables Prolifération Maturation
Progéniteurs différenciés -cellules engagées dans une voie de différenciation régulée par des facteurs de croissances -pas d ’autorenouvellement -prolifération -pas d ’identification morphologique ? NFS myélogramme
FACS
CFU-E Cul tures CFU-GM CFU-MK CFU-Eo CFU-Ba NFS myélogramme
Cellules Souches Hématopoïétiques totipotentes Identification des cellules souches myéloïdes par le système de culture à long terme (Dexter) CSH Totipotentes -autorenouvellement -différenciation capacité de générer l’ensemble des cellules du sang périphérique système de culture à long terme adapté aux cellules souches lymphoïdes (Witlock) Caractérisation en cytométrie de flux Modèles animaux
Nbre de CFU-GM = LTC-IC = progéniteurs myéloïdes Identification des progéniteurs myéloïdes MHN Culture 15 j. +SH / SVF / HydroC Irradiation à J 15 échantillon à tester Nbre de CFU-GM = LTC-IC = progéniteurs myéloïdes Culture 5 semaines Culture long terme (LTC) Système « Dexter »
Identification des progéniteurs lymphoïdes Test cells Myeloid LTC medium 33°C 4 weeks Lympoid LTC CFU-pre-B Epo + PWM-SCCM BFU-E CFU-GM CFU-GEMM SF + IL-7 1 week Switch
Cellules de sang de cordon CD34+/CD19-/CD10- In vitro identification of human pro-B cells that give rise to macrophages,natural killer cells, and T cells Damien Reynaud, Nathalie Lefort, Elodie Manie, Laure Coulombel, and Yves Levy-Blood 2003 Cellules de sang de cordon CD34+/CD19-/CD10- Culture sur lignée stromale (feder) + IL2 / IL15 / SCF
Tri sous population CD127+ (IL7a Rcp) Tests de différenciation cellulaire in vitro culture en milieu liquide + cytokines Cellule NK macrophages Cellule T
Modèles animaux Capacité des CSH de produire chez un receveur irradié des cellules matures fonctionnelles des lignées myéloïdes et lymphoïdes B et T *Souris immunodéficientes tolérantes aux greffes xenogéniques (souris SCID, NOD-SCID) *Système xenogénique homme /mouton receveur = fœtus de mouton, système immunitaire non fonctionnel donc tolérance vis à vis des cellules humaines possibilité de développement d ’une hématopoïèse humaine durable et transplantable à des receveurs secondaires Intérêt : mesure du potentiel de reconstitution in vivo de CSH test in vivo de facteurs régulant l ’hématopoïèse
Intérêts des cultures de progéniteurs médullaires pour le diagnostic des syndromes myéloprolifératifs (PV et TE). Hémopathies caractérisées par une production excessive de GR et/ou de plaquettes Anomalie des cellules souches hématopoïétiques : *prolifération non contrôlée *possibilité de croissance en milieu sans sérum et sans cytokine Valeur diagnostique de la présence d ’une croissance « spontanée » (EEC/EMC) en culture clonogénique
Diagnostic des Thrombocythémies Essentielles Critères positifs *plaquettes > 600G/L *BOM : augmentation du nombre de MK /myélofibrose Critères d’exclusion * pas de PV * pas de LMC * pas de myélofibrose idiopathique *pas de syndrome myélodysplasique *pas de thrombocytose secondaire WHO classification of tumors PVSG classification
TE : valeur diagnostique des cultures clonogèniques ? Critères d ’exclusion * pas de PV * pas de LMC * pas de myélofibrose idiopathique * pas de syndrome myélodysplasique * pas de thrombocytose seondaire CFU-MK Critères positifs *plaquettes > 600G/L *BOM : augmentation du nombre de MK
EMC 24/24 TE 0/20 TS 0/18 sujets sains 11/20 PV + Thrombocytoses. The determination of spontaneous megakaryocyte colony formation is an unequivocal test for discrimination between essential thrombocythaemia and reactive thrombocytosis. Rolovic Z. et al. British Journal of Haematology 1995 EMC 24/24 TE 0/20 TS 0/18 sujets sains 11/20 PV + Thrombocytoses. 7/16 CML +Thrombocytoses. EEC 21/24 EEC 0/20 TS 20/20 PV + Thrombocytoses. 1/16 CML + Thrombocytoses.
Standardization and comparison of endogenous erythroid colony assays performed with bone marrow or blood progenitors for the diagnosis of polycythemia vera The Hematology Journal (2003) 0, 000–000
A STANDARDIZED ENDOGENOUS MEGAKARYOCYTIC / ERYTHROID COLONY (EMC/EEC) ASSAY FOR THE DIAGNOSIS OF ESSENTIAL THROMBOCYTHEMIA
Intérêt de la standardisation Quels milieux de cultures ? Quelle reproductibilité ? CFU-MK Quelle valeur diagnostique ? BFU-E
Ingéniérie tissulaire / thérapie cellulaire De nombreuses pathologies résultent d ’une perte ou de l ’atteinte d ’un organe entraînant une perte de cellules spécialisées , non compensée maladie de Parkinson, déchirures méniscales, maladie autoimmune (DID) IDM…... La possibilité de réparer ces atteintes par « remplacement cellulaire » devrait permettre la restauration de la fonction normale Intérêt majeur sur la production de cellules/tissus normaux dans un but thérapeutique / médecine régénérative
Thérapie cellulaire autologue Principe : prélever des cellules/tissu différenciés sur le receveur, expansion in vitro/ex vivo ré-introduction sur le site de la lésion pour « réparation » Intérêt ; pas de conflit immunologique Limite : quantité de matériel disponible Exemples réparation de déchirure méniscale par la production ex vivo de chondrocytes autologues Fibroblaste pour brûlure sévère Myocytes pour réparation cardiaque
Cellules ES et thérapie autologue
Thérapie cellulaire allogénique Tissus allogéniques et lignées cellulaires *transplantation d ’organe, *lignée cellulaire continue ex lignée humaine neuronale et AVC *tissu allogénique Cellules souches allogéniques *greffe allogénique de moelle ou de CSP dans les hémopathies autres pathologies *cellules ES allogéniques Tissue engineering and cell based therapies, from the bench to the clinic: The potential to replace, repair and regenerate William L. Fodor1 Reprod Biol Endocrinol. 2003 Nov 13; 1(1): 102
Différenciation de Cellules ES de souris Corps embryoïdes Précurseurs ologodendrocytes neurones astrocytes
Applications en thérapie cellulaire Précurseurs oligodendrocytaire Précurseurs motoneurones Cellules ES Précurseurs Neurones dopaminergiques Précurseurs Précurseurs gliaux
Ingéniérie tissulaire / thérapie cellulaire 1) Expansion cellulaire Objectif : produire de grande quantité cellulaire à visée thérapeuthique Ex : expansion de cellules hématopoïétiques culture de kératinocytes 2) thérapie génique correction d’un déficit par transfection virale de cellules ex : correction de déficits immunitaires héréditaires liés à l ’X, par greffe de CSH, Difficultés technique ++ ! prolifération clonale maligne induite par le retrovirus !
Transplantation d’Îlots Pancréatiques Technique Résultats actuels Perspectives F. Bayle - PY. Benhamou Département d’Urologie - Néphrologie - Endocrinologie - CHU Grenoble Groupe Rhin Rhône-Alpes Genève pour la Greffe d’Îlots de Langherans Tours Octobre 2003
du Pancréas à l’Îlot Prélèvement Conditionnement
Tamisage Digestion Îlots avant purification
(Coloration Dithizone) Lavage Purification : Centrifugation Gradient de Ficoll Îlots purifiés (Coloration Dithizone)
Comptage Test fonctionnel Sécurité sanitaire Conditionnement Transport
Injection intra-hépatique : Contrôle écho + scopie Anesthésie locale Cathétérisme portal Injection des Îlots