CHAPITRE Fractions et problèmes

Slides:



Advertisements
Présentations similaires
CHAPITRE 1 Opérations sur les nombres relatifs
Advertisements

LES FRACTIONS 3° Avon 2009Bernard Izard 10-FR I - DECIMAL et FRACTION II – ECRITURE FRACTIONNAIRE III- PARTAGE IV – FRACTION DUN NOMBRE V - FRACTIONS ÉGALES.
Les écritures fractionnaires
CHAPITRE 5 Fractions.
Les quotients (6) Définition d’un quotient
Fractions.
Les Fractions.
CHAPITRE 3 Calcul numérique et puissances
Nombres en écritures fractionnaires
Progression Mathématiques CM1-CM2
Utilise la barre d’espace ou les flèches pour naviguer
4ème FRACTIONS Chapitre 3 1) Égalité de fractions
CHAPITRE 5 Fractions.
Utilise la barre d’espace ou les flèches pour naviguer
Chapitre 1 PGCD de deux nombres.
Division euclidienne - décimale
1 Les décimaux Difficultés dapprentissage Daprès un document de Catherine Paquin (IUFM de Lorraine)
La division ne se termine pas
OPERATIONS SUR LES NOMBRES EN ECRITURE FRACTIONNAIRE
Les écritures fractionnaires
Cours de 3ème SAGE P Module1 Révisions Calculs numériques.
Calculs et écritures fractionnaires
Les fractions Vocabulaire – Définition.
CALCUL FRACTIONNAIRE.
Les expressions algébriques
Qu’est-ce qu’une fraction ?
Les opérations avec les
Multiplication de fractions
Calcul littéral Identités remarquables
Mise en forme en Mathématiques
Amérique Nov95 On pose : Écrire les nombres M et P sous la forme d'une fraction irréductible P = 1,5   2  0,14  M = -  5 7.
(Lille 1995) Ecrire les nombres suivants sous forme d'une fraction (le détail doit apparaître sur la copie) : A = B = 1 + :
CHAPITRE 3: LES NOMBRES.
- Chap3 - Nombres décimaux-Opérations
Chapitre 5 Fractions.
Les expressions algébriques
Fabienne BUSSAC 15 FRACTIONS + – 1. QUOTIENTS EGAUX
Fraction... vue autrement
Fractionner Si on partage cette surface en cinq parties identiques, on obtient cinq morceaux plus petits. Chaque morceau est une fraction de la surface.
- Chap 7 - Fractions.
(Amiens sept 97) Calculer A et B. Les résultats seront écrits sous forme de fractions aussi simples que possible A = B = +
Addition – Soustraction - Multiplication
Placer le point A d’abscisse 3 dixièmes
MULTIPLICATION DIVISION
Enchaînement d’opérations
?...1…-13…( )…x…/… …-(-2)…-2(5-7)…-2+6…?
Chapitre 1 Nombres relatifs.
(Asie 99) On donne : Calculer A et B et donner le résultat sous la forme d'un quotient de deux nombres entiers _ A =  B =
Écritures fractionnaires
Transformation des fractions
Fraction irréductible
Opérations sur les nombres relatifs
Enchaînement d’opérations
Opérations sur les nombres relatifs
Les fractions
( Caen_septembre 95) Calculer les nombres A et B, en donnant les résultats sous forme de fractions irréductibles A = B = + : 2.
Enchaînement d’opérations
Chapitre 1: Nombres relatifs M. FELT
Quatrième 4 Chapitre 3: Écritures Fractionnaires M. FELT 1.
Multiplication et Division des Fraction
LES FRACTIONS ÉQUIVALENTES
Division euclidienne - décimale
(Amérique 99) On donne les nombres : a = et b = Calculer A et B tels que : A= a - b et B = a b.
Les stratégies de calcul 5 e et 6 e année. Addition.
Les opérations sur les fractions
CHAPITRE 3 Calcul numérique et puissances
CHAPITRE 3 Calcul numérique et puissances
Transcription de la présentation:

CHAPITRE Fractions et problèmes

Objectifs: Savoir lire et représenter d’un segment, d’une surface. Savoir écrire plusieurs fractions égales à une fraction donnée. Savoir écrire un nombre décimal sous la forme d’une fraction et inversement. Savoir que . aaaaaa

Les fractions trouvent leurs origines en Egypte avec les fractions de numérateur 1. Au Moyen Age en Europe, les fractions sont appelées nombres rompus. La barre de fraction venant des arabes fut ensuite reprise par le français Nicole Oresme (XIVe).

I. Ecriture fractionnaire La règle est partagée en 4 morceaux égaux. Les morceaux colorés représentent les de la règle. s’appelle une fraction. ≈ rompu, fracturé. Le mot vient du latin « fractiones »

Mots inventés par Nicole ORESME XIVe 2) Dans la vie  Cuisine (un tiers de litre de lait) Heure (2 heures et quart) Chronomètre (8 secondes et 3 dixièmes) 3) Vocabulaire LE NUMERATEUR (numéral  nombre) LE DENOMINATEUR (dénomme la fraction  nom) Remarque : Des quarts (nom - dénominateur) … il y en a 3 (nombre - numérateur). Mots inventés par Nicole ORESME XIVe

II. Fraction et quotient 1) Définition Une fraction est un quotient de deux nombres ENTIERS. Plus généralement, est appelé le quotient de 3 par 4. Il se définit comme le nombre qui multiplié par 4 donne 3: Exemples : Compléter les opérations suivantes avec la fraction qui convient.  … x 7 = 11  … x 6 = 1  8 x … = 5

2) Ecriture décimale ou non… d’une fraction Certaines fractions possèdent une écriture décimale. Exemple : La fraction possède une écriture décimale. Mais toutes les fractions ne possèdent pas d’écriture décimale. Remarque : Par exemple,  1,833…

III. Fractions égales Exemple : Les deux surfaces, = = Les deux surfaces, verte et rouge, sont de taille égale. Ces deux fractions sont égales.

On ne change pas la valeur d’une fraction lorsqu’on = X 2 Comment passe-t-on de à ? X 2 On ne change pas la valeur d’une fraction lorsqu’on multiplie (ou divise) son numérateur et son dénominateur par un même nombre. Remarque : Cette règle s’applique-t-elle à l’addition et la soustraction ? + 5 mais et + 5

IV. Simplifications de fractions Simplifier une fraction, c’est l’écrire avec des nombres « plus simples » (plus petits !) Méthode: Il faut donc diviser le numérateur et le dénominateur par un même nombre. Cela est possible si le numérateur et le dénominateur sont dans « la même table de multiplication ». Exemples: Simplifier les fractions  . On a = = =

V. Multiplier un nombre par une fraction numérateur nombre x = (nombre x numérateur) ÷ dénominateur dénominateur Ou, selon le calcul à effectuer numérateur nombre x = (nombre ÷ dénominateur) x numérateur dénominateur Exemples : Calculer le plus simplement possible = ( 14 ÷ 7 ) x 2 = 2 x 2 = 4 = ( 15 ÷ 5 ) x 7  = 3 x 7  = 21  = ( 0,9 x 10 ) ÷ 3 = 9 ÷ 3 = 3