Les distributions en classes

Slides:



Advertisements
Présentations similaires
Les distributions en classes Reprise du cours ( semaine du 10 au 15 novembre 2014 ; Gr. 2 à 5 ) Rappel des formules pour la distribution simple : Correction.
Advertisements

Reprise du cours ( ) Chapitre 5 : interprétation des données d’enquêtes hasard  prudence  incertitude et imprécision formules : marge et fourchette.
Les distributions en classes Exercice 1. Distribution des revenus mensuels. Données Les cases devant rester vides (SO) Valeurs faciles à trouver :  les.
Cours 10 : reprise Taux de chômage : formule : autre nom jamais utilisé : la % de chômeurs dans la population active seule information à retenir du bloc.
Cours 7 : reprise Taux de chômage : formule : autre nom jamais utilisé : la % de chômeurs dans la population active seule information à retenir du bloc.
Dernier cours  Reprise du cours du 16 décembre (GR 1 à 5)  Sera disponible sur le site ce weekend  Examen ; o Matière de l’examen sera définie dans.
Moyenne  Conclusions et résumé o 2 idées : la même chose à tout le monde & vérification o 9 formules (du moins pour nous) : 3 familles : arithmétique,
Du chapitre 1 au chapitre 2 1. Les graphiques : introduction (p.19)  Pour prendre possession des données o des chiffres dans un tableau, c’est bien o.
Chapitre 3 La numération octale et hexadécimale. Chapitre 3 : La numération octale et hexadécimale 1 - Introduction 2 - Le système Octal Définition.
I. Les différentes bases utilisées en numérique. La base d écimale, base de 10 ( ou codage de 10) qui utilise 10 symboles: 0 ; 1 ;2 ; 3 ; 4 ; 5 ; 6; 7.
Du chapitre 1 au chapitre 2 1. Les graphiques : introduction (p.15)  Pour prendre possession des données o des chiffres dans un tableau, c’est bien o.
Comparaison des méthodes de calcul de quartiles On considère la série statistique ci-dessous : Effectif total : 12.
Chapitre 4: Variation dans le temps  Les données : audience totale en milliers (tableau 4.1, p. 47, extrait) o Origine : enquête sur les habitudes d’écoute.
Généralisation de la comparaison de moyennes par Analyse de la variance (ANOVA)
Utilisation du logiciel EduStat © Analyse classique d’items L’examen du rapport.
Chapitre 5 Interprétation des données d’enquête
Et maintenant, le mode : fastoche !
Micro Informatique au Cellier
PowerPoint E : Comparaisons internationales
Suites ordonnées ou mettre de l’ordre
Chapitre 4: Variation dans le temps
Tableau à double entrée
Le chômage en Belgique. Fausses évidences et vrais enjeux
Chapitre 1 Généralités sur les données
Interprétation des indicateurs?
Chapitre 4: Variation dans le temps
1. La moyenne arithmétique ( )
Chapitre 1 Généralités sur les données
Les inégalités et les inéquations
Reprise du cours ( ) Séance « questions/réponses » :
Reprise du cours ( ) Aujourd’hui :
Une grande partie des données que nous serons amenés cette année à étudier sera exprimée en unités monétaires. Or, nous le savons, il existe un phénomène.
Statistique descriptive
Du chapitre 1 au chapitre 2
par nature une discipline quantitative
PHYSIOLOGIE Le coeur.
Analyse en Composantes Principales A.C.P. M. Rehailia Laboratoire de Mathématiques de l’Université de Saint Etienne (LaMUSE).
Exercices corrigés de statistiques
Pour aller directement à la reprise du cours
chapitre 3 Les Statistiques
POL1803: Analyse des techniques quantitatives
Chapitre 1 Généralités sur les données
Comment mesurer les inégalités ?
FICHE METHODOLOGIE 1 Spécificités des données et des informations à caractère sanitaire et social.
MOYENNE, MEDIANE et ECART TYPE d’une série statistique
La synthèse de documents
4. Assurance emploi.
La méthode du simplexe. 1) Algorithme du simplexe  Cet algorithme permet de déterminer la solution optimale, si elle existe, d’un problème de programmation.
Mathématiques et Sports. La course à pied La course à pied  Les mathématiques, sont un outil qui permet d’analyser, de simuler, de prédire et d’optimiser.
ACP Analyse en Composantes Principales
Statistiques. Moyenne, Moyenne pondérée, Tableur et graphiques.
Programme financé par l’Union européenne
Statistiques.
La méthode scientifique
P LAMBOLEZ Partie maths V GILLOT Partie anglais
Enquête tabac 2018 Un rapport pour la Fondation contre le Cancer, menée par GfK Belgium Rapport 1.
Test 2.
Centre d’études et de recherches sur les qualifications
Exercice de statistiques
chapitre 3 Les Statistiques
Chapitre 8 : Organisation et gestion de données
Quel niveau de croissance pro-pauvres
La démarche scientifique
Diapositives E : Comparaisons interprovinciales
Programme d’appui à la gestion publique et aux statistiques
Conception cartographique
Utiliser le modèle log-linéaire pour mettre au jour la structure du lien entre les deux variables d’un tableau de contingence : un exemple d’application.
Statistiques et probabilités
STATISTIQUE INFERENTIELLE LES TESTS STATISTIQUES.
Transcription de la présentation:

Les distributions en classes Exercice 1. Distribution des poids en classes : np p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 1. Distribution des poids en classes : np p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 1. Distribution des poids en classes : Nk p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 1. Distribution des poids en classes : Nk Formule à privilégier ! p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 1. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 1. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n Si méthode applicable à une cellule, ° applicable à toutes les cellules de la colonne, ° y compris pour la ligne « Total » ° sauf exception (sans objet).

Les distributions en classes Exercice 1. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n Si méthode applicable à une cellule, ° applicable à toutes les cellules de la colonne, ° y compris pour la ligne « Total » ° sauf exception (sans objet).

Les distributions en classes Exercice 1. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n Si méthode applicable à une cellule, ° applicable à toutes les cellules de la colonne, ° y compris pour la ligne « Total » ° sauf exception (sans objet).

Les distributions en classes Exercice 1. Distribution des poids en classes : fp Fréquence d’une ligne = division ° du contenu de la cellule « effectif » de la ligne ° par n Si méthode applicable à une cellule, ° applicable à toutes les cellules de la colonne, ° y compris pour la ligne « Total » ° sauf exception (sans objet).

Les distributions en classes Exercice 1. Distribution des poids en classes : Fk p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 1. Distribution des poids en classes : Fk p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 1. Distribution des poids en classes : Fk Formule à privilégier ! p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 1. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3= 5  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3= 7  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° pour 63,64% des « i », le poids est inférieur à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 1. Distribution des poids en classes Exemples de désignation/interprétation des résultats : n3= 5  ° effectif (simple) de la 3e ligne ° pour 5 « i », le poids est compris entre 40 et moins de 60 kg N3= 7  ° effectif cumulé de la 3e ligne ° 7 « i » présentent une valeur de la variable inférieure à 60 kg f3= 45,45%  ° fréquence (simple) de la 3e ligne ° 45,45% des « i » ont un poids appartenant à la 3e classe F3= 63,64%  ° fréquence cumulée de la 3e ligne ° 63,64% des observations sont inférieures à 60 kg p/k Bornes xp np Nk fp Fk 1 0-<20 10 0,00 % 2 20-<40 30 18,18 % 3 40-<60 50 5 7 45,45 % 63,64 % 4 60-<80 70 11 36,36 % 100,00 % 80-<100 90 Total SO

Les distributions en classes Exercice 2. Distribution des poids selon les valeurs observées Exemples de désignation/interprétation des résultats : n3= 4  ° effectif (simple) de la 3e ligne ° pour 4 « i », le poids est de 51 kg N3= 6  ° effectif cumulé de la 3e ligne ° 6 « i » présentent une valeur égale ou inférieure à 51 kg f3= 36,36%  ° fréquence (simple) de la 3e ligne ° 36,36% des « i » ont un poids de 51 kg p/k xp np Nk fp Fk 1 24 9,09 % 9,09 % 2 35 18,18 % 3 51 4 6 36,36 % 54,55 % 58 7 63,64 % 5 65 9 81,82 % 72 11 100,00 % Total SO

Les distributions en classes Exercice 3. Distribution de la variable « nationalité » Remarques : variable qualitative : cf. colonne « Autres codes » ne pas calculer les effectifs et fréquences cumulés en effet, pas d’ordre au contraire de la variable « poids » regroupements possibles p/k Nationalité Autres codes np Nk fp Fk 1 Belge 1 ou B 122 S. O. 60,70% 2 Marocaine 2 ou M 37 18,41% 3 Française 3 ou F 19 9,45% 4 Autre 4 ou Au 23 11,44% Total 201 100,00%

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Données Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot.

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Correction disponible sur claroline Interprétation de données p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot.

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Variable et individus sous observation Interprétation de données p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot.

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Variable et individus sous observation Interprétation de données p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot.

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot.

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 0,10 2 1.000-<2.000 110 0,55 3 2.000-<3.000 60 0,85 4 3.000-<4.000 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 0,85 4 3.000-<4.000 3.500 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 0,85 4 3.000-<4.000 3.500 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? Éventuellement oui : les fp p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver : les xp : pour p = 1 : (0 + 1.000)/2 = 500 f1 = F1 (forcé vu que c’est la 1re ligne) F4 = 1 (forcé vu que c’est la dernière ligne active) la fréquence de la ligne « Total » = 1,00 N3 = N2 + n3 = 110 + 60 = 170 Autre(s) indice(s) ? Généralement, c’est ici que cela coince ! p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver sur base d’une manipulation des équations théoriques (cf. p. XII) trouver un élément inconnu et une équation où il serait la seule inconnue Exemple : où F2 et N2 sont connus  calcul de n p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver sur base d’une manipulation des équations théoriques (cf. p. XII) trouver un élément inconnu et une équation où il serait la seule inconnue Exemple : où F2 et N2 sont connus  calcul de n p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver sur base d’une manipulation des équations théoriques (cf. p. XII) trouver un élément inconnu et une équation où il serait la seule inconnue Exemple : où F2 et N2 sont connus  calcul de n p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver sur base d’une manipulation des équations théoriques (cf. p. XII) trouver un élément inconnu et une équation où il serait la seule inconnue Exemple : où F2 et N2 sont connus  calcul de n p/k Bornes xp np Nk fp Fk 1 0-<1.000 500 0,10 2 1.000-<2.000 1.500 110 0,55 3 2.000-<3.000 2.500 60 170 0,85 4 3.000-<4.000 3.500 1,00 Tot. SO

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple :

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple :

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple :

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple :

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple :

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple :

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple :

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple :

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple : À mon avis, attendre le dernier moment pour introduire les nombres dans la formule ! Pourquoi ?

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple : 200

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Moins évident à trouver Exemple : 200 200 Une 2e fois dans le tableau

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Autre exemple : Exemple : avec F2 et f1 connues  f2 200 200

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Autre exemple : Exemple : 200 200

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Autre exemple : Exemple : 200 200

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Autre exemple : Exemple : 200 200

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Autre exemple : Exemple : 200 200

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Autre exemple : Exemple : 0,45 200 200

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver Après des valeurs plus difficiles : équations et manipulation Quand le tableau est complet, vérifications : retrouver une valeur par différents chemins déjà faire des vérifications en cours de route

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver Après des valeurs plus difficiles : équations et manipulation Quand le tableau est complet, vérifications : retrouver une valeur par différents chemins déjà faire des vérifications en cours de route

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver Après des valeurs plus difficiles : équations et manipulation Quand le tableau est complet, vérifications : retrouver une valeur par différents chemins déjà faire des vérifications en cours de route

Les distributions en classes Exercice 4. Distribution des revenus mensuels. Les cases devant rester vides (SO) Valeurs faciles à trouver Après des valeurs plus difficiles : équations et manipulation Quand le tableau est complet, vérifications : retrouver une valeur par différents chemins déjà faire des vérifications en cours de route

Les distributions en classes Exercice 5. Distribution du poids dans une localité Remarques : méthode : cf. exercice 4 ici, les résultats sont moins évidents dès lors les manipulations théoriques sont plus utiles p/k Bornes (en kg) xp np Nk fp Fk 1 0-<20 10 875 0,07 2 20-<40 30 1.625 2.500 0,13 0,20 3 40-<60 50 4.000 6.500 0,32 0,52 4 60-<80 70 2.625 9.125 0,21 0,73 5 80-<100 90 3.375 12.500 0,27 1,00 Tot. SO

Les distributions en classes Exercice 5. Distribution du poids dans une localité Remarques : méthode : cf. exercice 4 ici, les résultats sont moins évidents dès lors les manipulations théoriques sont plus utiles p/k Bornes (en kg) xp np Nk fp Fk 1 0-<20 10 875 0,07 2 20-<40 30 1.625 2.500 0,13 0,20 3 40-<60 50 4.000 6.500 0,32 0,52 4 60-<80 70 2.625 9.125 0,21 0,73 5 80-<100 90 3.375 12.500 0,27 1,00 Tot. SO

Les distributions en classes Exercice 5. Distribution du poids dans une localité Remarques : méthode : cf. exercice 4 ici, les résultats sont moins évidents dès lors les manipulations théoriques sont plus utiles p/k Bornes (en kg) xp np Nk fp Fk 1 0-<20 10 875 0,07 2 20-<40 30 1.625 2.500 0,13 0,20 3 40-<60 50 4.000 6.500 0,32 0,52 4 60-<80 70 2.625 9.125 0,21 0,73 5 80-<100 90 3.375 12.500 0,27 1,00 Tot. SO

Les distributions en classes Exercice 5. Distribution du poids dans une localité Remarques : méthode : cf. exercice 4 ici, les résultats sont moins évidents  dès lors les manipulations théoriques sont plus utiles p/k Bornes (en kg) xp np Nk fp Fk 1 0-<20 10 875 0,07 2 20-<40 30 1.625 2.500 0,13 0,20 3 40-<60 50 4.000 6.500 0,32 0,52 4 60-<80 70 2.625 9.125 0,21 0,73 5 80-<100 90 3.375 12.500 0,27 1,00 Tot. SO

Les distributions en classes Exercice 6. Distribution de l’âge sur données réelles Remarques : méthode : cf. exercice 4 ici, les résultats ne sont pas du tout évidents  les manipulations théoriques sont indispensables attendre le dernier moment pour remplacer les symboles par les nombres lors des manipulations, si uniquement emploi des nombres : procédure longue et fastidieuse ne pas s’étonner de trébucher p/k Bornes xp np Nk fp Fk 1 6-<9 ans 7,5 323.562 21,46% 2 9-<12 ans 10,5 365.766 689.328 24,26% 45,72% 3 12-<15 ans 13,5 418.625 1.107.953 27,77% 73,48% 4 15-<18 ans 16,5 399.784 1.507.737 26,52% 100,00% Tot. SO 1,00

Les distributions en classes Exercice 6. Distribution de l’âge sur données réelles Remarques : méthode : cf. exercice 4 ici, les résultats ne sont pas du tout évidents  les manipulations théoriques sont indispensables attendre le dernier moment pour remplacer les symboles par les nombres lors des manipulations, si uniquement emploi des nombres : procédure longue et fastidieuse ne pas s’étonner de trébucher p/k Bornes xp np Nk fp Fk 1 6-<9 ans 7,5 323.562 21,46% 2 9-<12 ans 10,5 365.766 689.328 24,26% 45,72% 3 12-<15 ans 13,5 418.625 1.107.953 27,77% 73,48% 4 15-<18 ans 16,5 399.784 1.507.737 26,52% 100,00% Tot. SO 1,00

Les distributions en classes Exercice 6. Distribution de l’âge sur données réelles Remarques : méthode : cf. exercice 4 ici, les résultats ne sont pas du tout évidents  les manipulations théoriques sont indispensables attendre le dernier moment pour remplacer les symboles par les nombres lors des manipulations, si uniquement emploi des nombres : procédure longue et fastidieuse ne pas s’étonner de trébucher p/k Bornes xp np Nk fp Fk 1 6-<9 ans 7,5 323.562 21,46% 2 9-<12 ans 10,5 365.766 689.328 24,26% 45,72% 3 12-<15 ans 13,5 418.625 1.107.953 27,77% 73,48% 4 15-<18 ans 16,5 399.784 1.507.737 26,52% 100,00% Tot. SO 1,00

Les distributions en classes Exercice 6. Distribution de l’âge sur données réelles Remarques : méthode : cf. exercice 4 ici, les résultats ne sont pas du tout évidents  les manipulations théoriques sont indispensables attendre le dernier moment pour remplacer les symboles par les nombres lors des manipulations, si uniquement emploi des nombres : procédure longue et fastidieuse ne pas s’étonner de trébucher p/k Bornes xp np Nk fp Fk 1 6-<9 ans 7,5 323.562 21,46% 2 9-<12 ans 10,5 365.766 689.328 24,26% 45,72% 3 12-<15 ans 13,5 418.625 1.107.953 27,77% 73,48% 4 15-<18 ans 16,5 399.784 1.507.737 26,52% 100,00% Tot. SO 1,00

Les distributions en classes Exercice 6. Distribution de l’âge sur données réelles Remarques : méthode : cf. exercice 4 ici, les résultats ne sont pas du tout évidents  les manipulations théoriques sont indispensables attendre le dernier moment pour remplacer les symboles par les nombres lors des manipulations, si uniquement emploi des nombres : procédure longue et fastidieuse ne pas s’étonner de trébucher p/k Bornes xp np Nk fp Fk 1 6-<9 ans 7,5 323.562 21,46% 2 9-<12 ans 10,5 365.766 689.328 24,26% 45,72% 3 12-<15 ans 13,5 418.625 1.107.953 27,77% 73,48% 4 15-<18 ans 16,5 399.784 1.507.737 26,52% 100,00% Tot. SO 1,00 Faites encore comme vous le voulez !

Les distributions en classes Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% S.O. Total

Les distributions en classes Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% S.O. Total

Les distributions en classes Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% S.O. Total

Les distributions en classes Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% S.O. Total

Les distributions en classes Exercice 7. Distribution des chômeurs par âge Population : les chômeurs indemnisés de Bruxelles en 2008 Variable :  l’âge, avec regroupement en classes de 5 ans  var. quantitative continue (valeur numérique et infinité de valeurs) Données groupées : pour un paquet de 484 individus, âge entre 18 –< 20 ans Tableau des effectifs et des fréquences (interprétation : cf. site) p/k Classes xp np Nk fp Fk 1 18-< 20 ans 19,0 484 0,7% 2 20-< 25 ans 22,5 7.452 7.936 10,1% 10,8% 3 25-< 30 ans 27,5 12.270 20.206 16,6% 27,4% 4 30-< 35 ans 32,5 11.294 31.500 15,3% 42,7% 5 35-< 40 ans 37,5 10.479 41.979 14,2% 56,9% 6 40-< 45 ans 42,5 9.126 51.105 12,4% 69,3% 7 45-< 50 ans 47,5 8.207 59.312 11,1% 80,4% 8 50-< 55 ans 52,5 8.637 67.949 11,7% 92,1% 9 55-< 60 ans 57,5 4.863 72.812 6,6% 98,7% 10 60-< 65 ans 62,5 942 73.754 1,3% 100,0% S.O. Total

Les distributions en classes Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste plus marqué du côté des demandeurs : cf. 50 ans et + demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

Les distributions en classes Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste plus marqué du côté des demandeurs : cf. 50 ans et + demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

Les distributions en classes Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste plus marqué du côté des demandeurs : cf. 50 ans et + demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

Les distributions en classes Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste plus marqué du côté des demandeurs : cf. 50 ans et + demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

Les distributions en classes Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

Les distributions en classes Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les jeunes chômeurs  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

Les distributions en classes Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les chômeurs < 30 ans  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

Les distributions en classes Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les chômeurs < 30 ans  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %

Les distributions en classes Ex. 8. Chômage – Comparaison des 3 Régions belges en 2008 Objectif : voir l’utilité des tableaux pour comprendre une situation % max & min selon demandeurs ou non-demandeurs d’emploi non-demandeurs : forte concentration à 50 ans et + contraste min-max + marqué du côté des demandeurs (cf. 50 ans et +) demandeurs d’emploi : en Flandre, % plus fort de 50 ans et + Plan du Gouvernement fédéral ciblé sur les chômeurs < 30 ans  Gouvernement flamand mécontent vu sa situation (+ autres commentaires, cf. site) Conclusion : pour comprendre, une analyse de données chiffrées Bon exemple d’utilité des statistiques Âge Demandeurs d’emploi Oui Non % min % max < 30 ans FL : 24,1 % WA : 30,9 % FL : 1,7 % WA : 2,4 % >=50 ans BR : 19,6 % FL : 32,2 % B & W : 94,4 % FL : 95,8 %