Démontrons que: Les intersections de deux plans parallèles par un troisième plan qui coupe les deux premiers sont deux droites parallèles. Realised by.

Slides:



Advertisements
Présentations similaires
Symétrie, groupes ponctuels et groupes spatiaux
Advertisements

Les Triangles Isométriques & Les Isométries
constructions graphiques
constructions graphiques
TRIANGLE & PARALLELES Bernard Izard 4° Avon TH
QCM Une seule réponse est exacte
Hypothèse sur la technologie de production : ½
ACTIVITES MENTALES Collège Jean Monnet Préparez-vous !
Quelques METHODES GRAPHIQUES utiles en Méca
Lentille divergente : Construction d’un rayon émergent correspondant à un rayon incident quelconque (méthode 1 basée sur le schéma de conjugaison B 
Nombre de chaînes de longueur r
Campagna Gaetana 2ème math Travail d'AFP M
Cours LES PLANS. Au dernier cours nous avons vus Léquation vectoriel et léquation normale dune droite dans le plan. Léquation vectoriel dune droite.
Lois de la statique Equilibre des solides.
Sommaire I- Définition et généralité
Définition d’un parallélogramme
Projection orthogonale d’un angle droit
2-1 CIRCUITS ÉLECTRIQUES SIMPLES
ENSIIE-Master MPRO Alain Faye
Les isométries Auteures : Nathalie Charest et Chantal Prince
A propos de ce diaporama Ce diaporama progresse automatiquement. Cest pourquoi : si vous trouvez que le diaporama avance trop lentement, ou pour passer.
Lignes trigonométriques.
Démonstration de géométrie
Les Sections Coniques.
ACTIVITES MENTALES Collège Jean Monnet Préparez-vous !
constructions graphiques
L’AIRE … dans tous ses états ! Projet Dédra-math-isons Par:
Présentation dans le cadre du congrès mathématique
Transformations géométriques
Triangles et parallèles
Lien entre alpha et bêta
CONSTRUCTIONS GÉOMÉTRIQUES
Une explication de la partie de SceneViewer.mouseDragged(), dans SimpleModeller.java, qui redimensionne les boîtes.
RESOLUTION GRAPHIQUE D’UN PROBLEME DE STATIQUE
La droite (IJ) est parallèle à la droite (BC).
Miroir convexe : Construction d’un rayon réfléchi correspondant à un rayon incident donné (méthode 1 basée sur le schéma de conjugaison B  ’) F C S.
Les Distances à New York
Démonstration de géométrie.
Miroir concave : Construction d’un rayon incident correspondant à un rayon réfléchi donné (méthode 1 basée sur le schéma de conjugaison   B’) F C S.
Miroir concave : Construction d’un rayon réfléchi correspondant à un rayon réfléchi donné (méthode 1 basée sur le schéma de conjugaison B  ’) B F.
constructions graphiques
Problèmes de parallélisme Problèmes d’orthogonalité
Unité 2: Fonction Quadratique et Équations
Théorème de Desargues Enoncé:
. . Deux plans sont parallèles ssi
Démonstration de géométrie Par Elise Aubry Nous allons démontrer que : Deux plans parallèles à un même troisième sont parallèles entre eux.
Une démonstration Utiliser les transformations (étude de figures).
Équations de plans.
Centre de gravité d ’une surface quelconque
Droites parallèles à un plan et translations.
Démonstration de Géométrie.
Géométrie 2 Les vecteurs
Lentilles Convergentes
Construction d’images par une lentille
Chapitre 4 THEOREME DE THALES 1) Théorème de Thalès 2) Applications.
Correction exercice Clermont 98
Cinématique d'un Solide 1 par rapport à un solide 2.
Correction exercice Polynésie 99
Les points A et B ont des trajectoires superposables.
Thalès dans le triangle
Présentation du Théorème de Thalès.
Seconde 8 Chapitre 2: L’espace
B A C Les Hypothèses ABC est un triangle * I est le milieu du côté [AB ] * La droite d contient le point I et est parallèle à la droite (BC) I La droite.
Aide mémoire Il existe une droite et une seule qui passe par deux points distincts.
Courbes de Bézier P2 P1 P3 P0 O
Faculté Polytechnique Cours 9: Représentation de courbes spatiales Géométrie et communication graphique Edouard Rivière-Lorphèvre.
Chantefable Wesley Hammond. Aucassin et Nicolette Seulement chantefable qui existe encore 12éme ou 13éme siècle Un seul exemplaire original existe Découvert.
Tracé du rayon non dévié passant par B et O
Présentation d’une démonstration. Présentation générale d’une démonstration Hypothèses: Conclusion: Dessin ou figure Affirmations: Justifications:
Géométrie et communication graphique
Transcription de la présentation:

Démontrons que: Les intersections de deux plans parallèles par un troisième plan qui coupe les deux premiers sont deux droites parallèles. Realised by Benoit Vandenberghe.

Hypothèse: Voici deux plans parallèles a et b ainsi qu’un troisième g qui coupe a et b suivant les droites a et b. a a a a a a a b b Thèse: Démontrons que la droite a est parallèle à la droite b. g

. . Démonstration A a a t b B b Car: g Marquons un point A de a et un point B de b Elle applique donc l’intersection de a et de g (a) sur l’intersection de b et de g (b). . A a a La translation qui applique A sur B applique aussi: a sur b g sur lui-même. t . b B b Car: a et b étant deux plans parallèles, toute translation qui applique un point quelconque de a sur un point quelconque de b applique aussi a sur b. g

Les droites a et b sont donc parallèles. Car: S’il existe une translation qui applique une droite sur une autre droite alors, ces deux droites sont parallèles.