Techniques opératoires Cycles 2 et 3

Slides:



Advertisements
Présentations similaires
Nombres et calcul Quelles modifications apportées par les programmes 2002 et 2005 ?
Advertisements

Groupe des CMAI « PPRE & Compétences »septembre 2008 Page : 1 La mise en œuvre : 1. Le repérage des élèves à partir des évaluations nationales Cahiers.
Utiliser les calculatrices en classe. 1. Introduction et choix de loutil Deux stratégies dutilisation sont possibles ; elles peuvent même être utilisées.
Bande unité – CM1.
Billets Problème : Problème mathématique :
MATHEMATIQUES : EVOLUTION PROGRAMMES
Le calcul mental: des ressources pour la classe
LE CALCUL LITTÉRAL AU COLLÈGE
Les fractions.
Animation mathématiques: Calcul mental au cycle 3
Quelques pistes pour arriver à mettre des élèves en autonomie
Calcul et numération Quelques points clés
Techniques opératoires Cycles 2 et 3
Techniques opératoires Cycles 2 et 3
Exemples d’activités et de supports
ORGANISATION DES CONTENUS
La situation de lenseignement des mathématiques en 2010 Évaluer, une entreprise complexe mais indispensable.
LEVALUATION DIAGNOSTIQUE AU CM2 Animation pédagogique 18/09/2007.
Stage de circonscription VALENCIENNES/ ANZIN
Calcul mental 3ème 2 Septembre 2010
Programme de mathématiques de sixième
Un parcours possible autour du calcul littéral
et évaluation des compétences
Calcul mental et instrumenté
Aide personnalisée Activités numériques
Nombres et calcul Quelles modifications apportées par les programmes 2002 et 2005 ?
LE NOMBRE : de la manipulation à la représentation du nombre
La numération Approche didactique Hélène Zucchetta IUFM Lyon
Animation pédagogique 2010 / 2011 Circonscription de Loudéac
a) Technique « traditionnelle » b) Technique « par cassage »
Enseignement des mathématiques au cycle 3
Tice (logiciels) et aide personnalisée.
Animation Pédagogique 14/01/2009
fonctionnement de la classe
Le codage des nombres en informatique
Utiliser les calculatrices en classe
Détour historique … •En 1909 : «Les exercices de calcul mental figureront à l’emploi du temps et ne devront pas être sacrifiés à des occupations considérées.
Automatismes et progrès en arithmétique élémentaire
Les mathématiques lécole élémentaire Grandes lignes des programmes Présentation Viviane BOUYSSE, juin 2008.
Exercices extraits de concours blancs donnés à différentes dates à l’IUFM d’Alsace avec propositions de corrigés Remarque : une autre présentation PowerPoint.
Enseigner les maths aux CP et CE1 Manipuler pour raisonner
Les écritures fractionnaires
Obstacles et difficultés liés aux contenus mathématiques.
Technique posée « traditionnelle » de la multiplication
Enseigner / apprendre le calcul mental…
Apprentissage des mathématiques Résolution de problèmes
Mise en forme en Mathématiques
1 Math au cycle 2 Quelques rappels sur les nombres Le document « Le nombre au cycle 2 » La soustraction : quelques repères Janvier 2011.
Numération cycle 3 : du nombre entier aux nombres décimaux
vous souhaite une bonne pause.
Apprentissage DES MATHEMATIQUES
Utiliser les calculatrices en classe
VIDEO d'une séance de mathématiques cycle 2 : GS CP CE1
LES PROBLÈMES ADDITIFS
Animation mathématiques au cycle 2
Enseignement , apprentissage et place du calcul mental
Le calcul mental au quotidien
Eléments sur la soustraction
Enseigner / apprendre le calcul mental… (2)
LE NOMBRE AU CYCLE 2 23 novembre 2011 Équipe de circonscription de L’Aigle.
Comment améliorer les performances des élèves en calcul mental?
Le calcul mental _ février 2010 ARGENTEUIL SUD
Enseigner / apprendre le calcul mental… (1)
Enseigner le calcul mental
LES TEXTES ET LES SHADOKS (Docs d’application et d’accompagnement)
Technique posée « traditionnelle » de la multiplication Cette présentation Powerpoint est destinée à des enseignants. Elle a pour objectif de revenir sur.
Enseigner le calcul mental
LA NUMÉRATION DÉCIMALE AU CYCLE 2 Stage RRS Pauillac le 13 avril 2012 Sandrine Sarnac Sanfins CPC EPS Lesparre.
Quelques point de repère pour élaborer une progression concernant la technique opératoire de la division euclidienne (CM1 et CM2) I Rappels pour l’enseignant.
La place du calcul mental et du calcul réfléchi dans la résolution de problème. Qu’est-ce que chercher?
Transcription de la présentation:

Techniques opératoires Cycles 2 et 3 Addition L’acquisition des mécanismes en mathématiques est toujours associée à une intelligence de leur signification. Les nombres doivent rester de taille raisonnable et aucune virtuosité technique n’est recherchée. Jean Luc Despretz – CPC Landivisiau – Avril 2010

Addition Dossier largement inspiré des travaux de : Roland Charnay, formateur à l’IUFM de Lyon, co-fondateur du groupe Ermel Jean Luc Brégeon, formateur à l’IUFM d’Auvergne Dominique Pernoux, formateur à l’IUFM d’Alsace Pierre Eysseric, IUFM d'Aix-Marseille Rémi Brissiaud, IUFM de Versailles de l’étude de plusieurs manuels de l’observation des élèves (évaluations CE1 – 2007)

Addition Le sens de l’addition J’utilise l’addition pour calculer le nombre d’objets d’une collection J’utilise l’addition pour calculer une somme de longueurs Le nombre total de billes est : 7 + 19 + 22 = 48 Il y a 48 billes dans cette collection Je veux mesurer le périmètre du terrain 34 + 25 + 50 + 49 = 158 Le périmètre de ce terrain est 158 m

Addition Le sens de l’addition J’utilise l’addition pour avancer sur la file numérique Je joue au jeu de l’oie et mon pion est sur la case 18. Je dois avancer de 6 cases 18 + 6 = 24 Mon pion sera sur la case 24 Rechercher avec les élèves des situations qui impliquent de trouver le résultat par une addition. (jeux, courses, collections, …)

Addition Difficultés observées Évaluations CE1 -2007 : des observations de classes ont permis d’analyser et d’interroger les élèves sur les stratégies utilisées. (GRP 29) Item 1 : calcul en ligne de 3 + 5 Erreurs constatées Pas de réponse Résultat erroné : 7, 9, … Item 2 : calcul en ligne de 15 + 4 Erreurs constatées Pas de réponse Résultat erroné : 18, … Confusion dans la valeur des chiffres (numération décimale) : 55

Addition Difficultés observées Item 3 : calcul en ligne de 45 + 23 Résultats corrects Le résultat 68 est donné sans explication (on ne demandait pas la procédure) 45 + 23 = 60 + 8 = 68 45+23 = 40+5+20+3 = 60 + 8 = 68 4+2 = 6 5+3 = 8 45+23 = 68 Erreurs constatées 45 + 23 = 65 45 + 23 = 45 + 20 = 47 L’écriture est transformée en 42 + 53 (sans résultat) L’élève utilise le tableau de numération mais en confondant la valeur des chiffres d u 4 2 5 3 9 5

Addition Difficultés observées Item 3 : calcul en ligne de 45 + 23 Sur 20 élèves interrogés dans une classe, on obtient plusieurs types de réponses : Pour calculer - je ne sais pas faire, j’ai oublié comment faire (l’élève n’a pas à sa disposition de procédure personnelle ou il n’ose pas en utiliser) je pose l’addition dans ma tête et je calcule 5 + 3 et après 4 + 2 (visualisation de l’opération posée) je fais 45 = 40 + 5 …. (procédures de décomposition) je relie 4 et 2 ça fait 6 et après 5 et 3 ça fait 8 (connaissance de la numération décimale mais en commençant par le premier chiffre) Pour trouver le résultat je compte directement dans ma tête (mémorisation de la table d’addition) je compte sur mes doigts si je ne suis pas sûr (l’élève utilise une procédure d’aide)

Addition Difficultés observées Item 4 : calcul posé de 57 + 14 Erreurs constatées (essentiellement la gestion de la retenue) Item 5 : pose l’opération et calcule 452 + 235 + 68 Autres erreurs constatées - opération mal posée - sens du calcul (début par les centaines)

Addition Pistes de travail ▪ Revenir à des manipulations d’objets et de collections (paquets de 10, passage à la dizaine…) ▪ Procéder à des échanges sous forme de jeu et d’écriture (ex: échange de monnaie, matériel scolaire, abaques …) pour comprendre la numération décimale et le sens de la retenue ▪ Apprendre à utiliser la table d’addition pour la mémoriser ▪ User quotidiennement en classe d’exercices variés en calcul mental (calcul rapide et réfléchi) ▪ Pratiquer régulièrement des décompositions de nombres (ex: calculs en arbre) ▪ Utiliser régulièrement le tableau de numération pour placer les nombres dans un premier temps, pour calculer dans un deuxième temps ▪ Habituer les élèves à chercher (essais de calcul, décompositions, dessins) ▪ Faire s’exprimer les élèves sur leur stratégie de calcul (expliquer comment) ▪ Méthode et rigueur sur la pose des opérations (ex : un chiffre par colonne ou par ligne)

7 Addition La table d’addition Mettre en place des stratégies pertinentes dès la GS Avoir une bonne connaissance mentale des nombres (ce qui implique diverses représentations) 7 Exemple : comparaison des représentations du nombre 7 dans divers manuels Exemple d’affichage dans une école

Addition La table d’addition Avoir une bonne connaissance mentale des nombres (ce qui implique diverses représentations) Exemple d’affichage dans une école : CP

Apprendre le plus rapidement possible Addition La table d’addition Apprendre le plus rapidement possible Les doubles (2 + 2, 5 + 5…) - Les compléments à « 10 » (1 + 9, 2 + 8, 3 + 7, 4 + 6, 5 + 5, 6 + 4, …) Domino des compléments à 10 Loto des doubles

Addition La table d’addition Développer des procédures de reconstruction du résultat - L’utilisation des « presque doubles ». « 6 + 7, c’est (6 + 6) + 1, c’est 12 + 1 » - Le passage à la dizaine. « 7 + 4, c’est (7 + 3) + 1, c’est 10 + 1 » Proposer des situations qui permettent de mettre en jeu les propriétés de l’addition. a + b = b + a =  7 + 8 = 8 + 7 =  a +  = c 7 +  = 15 c =  +  15 =  + 

Jeu de l’escargot Bataille des additions La table d’addition Connaître sa table d’addition, c’est : Connaître le résultat rapidement (mémoriser) par une utilisation progressive de la table de Pythagore Reconstruire le résultat. Utiliser des stratégies personnelles pour retrouver le résultat Exemple : pour calculer « 3+6 », l’élève doit pouvoir remplacer l’opération par « 6+3 » et éventuellement procéder au surcomptage (7, 8, 9) si cette façon de faire lui facilite la tâche. Jeu de l’escargot Bataille des additions

Addition La table d’addition

Addition La technique opératoire Préalables à l’addition posée Une bonne connaissance de la valeur des chiffres dans la numération décimale (numération de position). Le recours régulier au tableau de numération (outil de l’élève) est indispensable (nombres < 1000) C D U La technique utilisée par l’élève doit avoir un sens pour lui. C’est pourquoi elle doit être l’aboutissement formalisé de manipulations qui permettent de lui donner une véritable signification. Ex : le recours aux cartes à points permet cette prise de conscience.

Addition La technique opératoire Préalables à l’addition posée Une technique opératoire ne doit pas être le seul moyen pour l’élève d’effectuer des calculs simples. Il serait regrettable qu’il se réfugie derrière la technique quoiqu’il arrive, sans avoir d’autres possibilités de calcul. Par exemple, il ne devrait pas poser d’addition pour calculer 39 + 10. C’est la raison pour laquelle il faut présenter, en parallèle, le calcul en ligne faisant appel à la décomposition des nombres (passage par la dizaine) Exemple tiré de « Cap maths – CP »

Addition La technique opératoire Technique de l’addition posée Le document d’accompagnement des programmes 2002 « le calcul posé à l’école élémentaire » apporte ces précisions (Roland Charnay): ne pas dissocier dans le temps l’étude des cas « sans et avec retenue », afin de ne pas générer l’idée que le calcul se limite à l’addition séparée des chiffres de même valeur. - Le calcul posé en colonnes n’a d’intérêt que pour les nombres d’au moins deux chiffres, et même dans ce cas, le calcul à partir de l’écriture en ligne en repérant le rang de chaque chiffre est aussi efficace et rapide que le calcul posé « en étages ». Il est important de proposer également des additions de plus de deux nombres que les élèves doivent calculer en une seule fois. - Le recours à un ou plusieurs « matériels de numération » permet utilement d’illustrer la technique, et donc de mieux la comprendre, notamment par la correspondance établie entre retenues et groupements par dizaines, centaines…

Addition La technique opératoire Échanges avec manipulation de matériel

Addition La technique opératoire Technique de l’addition posée

Addition La technique opératoire Technique de l’addition posée

Addition Un aide mémoire pour l’élève La table d’addition + 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Addition Un aide mémoire pour l’élève Le rappel de la technique opératoire 287 peut s’écrire 65 peut s’écrire Je transforme les unités 12 = 1 dizaine et 2 unités Je transforme les dizaines 15 = 1 centaine et 5 dizaines Mon nombre s’écrit : 352 2 centaines 8 dizaines 7 unités + 6 dizaines 5 unités 2 centaines 14 dizaines 12 unités 2 centaines 15 dizaines 2 unités 3 centaines 5 dizaines 2 unités

Addition Un aide mémoire pour l’élève Je calcule de droite à gauche Je commence par la colonne des unités Je calcule 7 + 5 = 12 Je pose 2 et je retiens 1 Je continue par la colonne des dizaines Je calcule 1 + 8 + 6 = 15 Je pose 5 et je retiens 1

Addition Un aide mémoire pour l’élève Un ou des exemples d’opérations posées avec des indications sur la présentation à respecter Traits à la règle Écriture du signe + Un chiffre par ligne ou par colonne …