INFORMATION CHIFFREE (une nouveauté dans ce programme )
Pourcentages Pourcentages instantanés Pourcentage d’évolution Approximation en pourcentage
Pourcentage instantané Il s’agit de part, proportion, fréquence, rapport d’une partie au tout qui mesure la part relative à une quantité pas d’opérations sur les pourcentages seuls Que signifie alors : pourcentage de pourcentages ou encore somme de pourcentages ?
Pourcentage de pourcentage (Exemple) La pension civile des fonctionnaires peut bénéficier d’une surcote de 0,75% par trimestre travaillé, au delà du nombre de trimestres permettant d’obtenir la pension maximale S’ (75% de son dernier traitement S) et de 60 ans 4 trimestres supplémentaires apportent 3% de plus ! Mais la pension ne sera pas de 78% de S La surcote ne représente pas 3% du dernier salaire mais 3% du montant maximal de la pension soit : 0,03 S’ = 0,03 (0,75 S ) = (0,03x0,75)S = 0,0225 S soit 2,25% de S Dans une telle situation on parle abusivement de pourcentage de pourcentage, il ne s’agit en fait que de l’associativité de la multiplication. Savoir que, si p est la proportion de A dans E, et p’ celle de E dans F, alors la proportion de A dans F est pp’.
Somme de pourcentages Dans l’exemple précédent on ne peut ajouter 75% à 3%, ces deux pourcentages s’appliquent à des grandeurs différentes ! Si p est la proportion d’individus de A dans E et si p’ est la proportion d’individus de B dans E et si A et B sont disjoints alors la proportion d’individus de AUB dans E est p+p’
Tableau d’effectifs à deux caractères Structure de l’emploi en France, en milliers de personnes (source : Géographie de 1ère Bordas année 1998, INSEE, Enquête emploi) Tableau d’effectifs à deux caractères Secteur Emploi Agriculture Industrie Services Total Salariés 273 4650 13904 18827 Non-salariés 806 608 1291 2705 1079 5258 15195 21532
Tableau des fréquences par rapport à l’effectif total ( tableau 1.xls) Secteur Emploi Agriculture Industrie Services Total Salariés 1,3% 21,6% 64,6% 87,5% non-salariés 3,7% 2,8% 6,0% 12,5% 5,0% 24,4% 70,6% 100% Les fréquences marginales sont alors les sommes des fréquences conjointes par ligne ou par colonne (ces pourcentages s’appliquent a la même quantité : l’effectif total) Ce tableau est un tableau de contingence, les deux modalités étudiées permettent de réaliser une partition de la population
Un tableau à deux caractères qui ne réalise pas de partition de la population n’est pas un tableau de contingence Exemple : On s’intéresse aux communes des départements d’une région B A Département 1 Département 2 Département 3 Département 4 École de musique 15 57 53 55 Musée 14 39 18 20 Bibliothèque 73 111 88 101 Les différentes modalités de la variable A ne permettent pas de réaliser une partition des communes même si les modalités de la variable B permettent de le faire
Site : euler.ac-versailles.fr 245 : tableau d’effectifs et calcul de pourcentage (apprentissage ) De 874 à 876 : part de sous population en pourcentage (apprentissage ) De 1157à 1164 : effectifs et part en pourcentage de réunion et intersection de sous population (apprentissage ) De 889 à 891 : ( générateur d’exercice) De 1218 à 12315 : (Générateur d’exercices)
Pourcentage d’évolution Mesure l’évolution d’une grandeur, en général dans le temps ! Peut s’exprimer sous forme décimale, fractionnaire ou sous forme de pourcentage Une grandeur varie au cours du temps et passe de x1 à x2 réels strictement positifs. Le pourcentage d’évolution t ou taux d’évolution est égal à on pourra le noter n % et ou
t est un nombre qui s’écrira le plus souvent sous forme décimale Une variation exprimée en pourcentage est toujours une variation relative et elle est donc exprimée sans unité . La variation absolue est égale à x2 – . x1 Celle-ci est mesurée au contraire avec unités Dire que t est le taux d’évolution entre x1 et x2 équivaut aussi à dire que: x2 = x1 (1 + t ) t est un nombre qui s’écrira le plus souvent sous forme décimale 1 + t est le coefficient multiplicateur ou multiplicatif En pratique on calculera le quotient
Évolutions successives Deux augmentations successives de x % ne sont pas équivalentes à une hausse de 2x % De même une augmentation de x % n’est pas compensée par une réduction de x % Il faut revenir aux coefficients multiplicateurs Une augmentation suivie d’une réduction ou une réduction suivie d’une augmentation est toujours une réduction
Approximations dans le cas de faibles pourcentages Pour des valeurs de t proche de 0 on pourra approximer deux augmentations successives d’un même taux t par un taux global de 2t . Cette étude pourra être exploitée dans le cadre de l’utilisation du nombre dérivé . Voir à ce sujet fiche 48 d’euler .ac-versailles approximation_2.xls deriv1.g2w
Recherche du taux moyen équivalent Soient deux augmentations successives annuelles respectivement d’un taux t1 et d’un taux t2 Quel est le taux moyen annuel équivalent t ? TP_Taux_Moyen.xls (Irem de Nancy-Metz) On peut chercher un taux annuel équivalent après 1,2..n évolutions. Par exemple dans la recherche d’un taux équivalent concernant des variations successives de prix ! Exemple de taux moyen.xls
Site : euler.ac-versailles.fr De 877 à 888 pourcentages d’évolution , évolutions successives (Apprentissage) De 892 à 903 ( Générateur d’exercices)
Interprétation des proportions et comparaison Attention aux conclusions hâtives pourcentage de reçus aux concours des grandes écoles en 1950 et 1993 :Polytechnique , HEC, ENS, et ENA . Pour les deux années observées la population concernée ( les reçus!) représente 0,12% d’une classe d’âge de la population française. Parmi les reçus on distingue ceux originaires d’un milieu populaire et ceux originaires d’un milieu intellectuel (ceux dont le père a un niveau d’étude supérieur ou égal au baccalauréat )
Etude de deux tableaux Lecture des données Tableau des pourcentages de reçus suivant les catégories sociales et tableau de la structure de la société française Reçus 1950 1993 Milieu populaire 25% 9% Milieu intellectuel 60% 80% Autres 15% 11% Population Française 1950 1993 Milieu populaire 80% 60% Milieu intellectuel 5% 20% Autres 15% Lecture des données En 1950, 25% des reçus sont issus du milieu populaire et 60% du milieu intellectuel En 1950, le milieu populaire représente 80% de la population française et le milieu intellectuel en représente 5%.
Le premier tableau montre une diminution très importante des reçus en pourcentage entre les deux années dans les catégories populaires Un calcul est nécessaire Intéressons nous à la proportion de reçus dans un milieu donné à une date donnée Quelle est la population de référence ? c’est la population d’une classe d’âge française
Soit P le nombre d’individus de la classe d’âge française concernée en 1950 Les reçus de cette classe d’âge constituent 0,12% de P soit 0,0012P Parmi les reçus à cette date 25% sont issus du milieu populaire donc représentent 0,25(0,0012)P individus ou encore une proportion égale à 0,250,0012 de P donc 0,03% de la classe d’âge concernée Le milieu populaire en 1950 représente 80% de P soit 0,8P, la proportion de reçus dans le milieu populaire en 1950 est donc de 0,0003P 0,8P soit 0,000375 donc 0,0375% Cet exemple sera étudié à l’aide de fréquence conditionnelle soit fA(R) où R représente les reçus et A la classe d’âge de milieu populaire
Quelles sont les proportions de reçus à l’intérieur de chaque catégorie sociale ? 1950 1993 Milieu populaire 0,0375% 0,018% Milieu intellectuel 1,44% 0,48%
Remarques La situation des jeunes de milieu favorisé s’est plus dégradée que celle des milieux populaires Il est deux fois plus difficile de faire partie des reçus dans le milieu populaire et trois fois plus difficile dans le milieu intellectuel La variable cachée est l’évolution considérable de la société française dans ces trois catégories Le raisonnement pourrait être affiné en s’intéressant à des sous-catégories dans la population concernée
Exemple d’utilisation de tableur construction de tables de destinée et de recrutement Table de mobilité par PCS.doc Constructions des tables dest_recru.xls
Comparaison en pourcentage dans une même population 1 : Agriculteur ; 2 : Artisan, commerçant, chef d’entreprise ; 3 : Cadre et profession intellectuelle supérieure ; 4 : Profession intermédiaire 5 : Employés ; 6 : Ouvriers
Dans ce domaine il existe sur Educnet des TP conçus pour les professeurs de SES en liaison avec l’INSEE très utiles pour la lecture de tableaux www.educnet.education.fr/insee/emploi/pcs/pcsaccueil.htm (La progression des CSP qualifiées.doc)