Opérations sur les nombres relatifs

Slides:



Advertisements
Présentations similaires
CHAPITRE 1 Opérations sur les nombres relatifs
Advertisements

RELATIFS Bernard Izard 4° Avon RE I - ADDITION SOUSTRACTION
CALCUL LITTERAL Bernard Izard 4° Avon LT
?...1…-13…( )…+…-… …-(-2)…-(5-7)…-2+6…? Boîte à outils :
Nombres et calculs Niveau 5ème Objectifs fondamentaux :
CHAPITRE 5 Fractions.
CHAPITRE 6 Les Racines Carrées
Le calcul littéral (3) Expression littérale l
Addition et soustraction des nombres relatifs (1)
Les nombres relatifs (11)
Addition et soustraction des nombres relatifs (13)
CALCUL LITTERAL 3° Avon 2010 Bernard Izard 05-LT I – NOTATIONS
Fractions.
La loi des signes avec les 4 opérations.
Il existe 4 opérations : x ÷ Et deux signes + & -
Auteur : F PICARD. COMPRENDRES'ENTRAINER CALCUL DE SOMMES ALGÉBRIQUES.
Différence de relatifs
Utilise la barre d’espace ou les flèches pour naviguer
CHAPITRE Fractions et problèmes
4ème FRACTIONS Chapitre 3 1) Égalité de fractions
CHAPITRE 5 Fractions.
Les expressions algébriques
Cours de 3ème SAGE P Chapitre 1 Calcul numérique.
Fabienne BUSSAC NOMBRES RELATIFS 1. PRODUIT
OPERATIONS SUR LES NOMBRES EN ECRITURE FRACTIONNAIRE
Cours de 3ème SAGE P Module1 Révisions Calculs numériques.
CALCUL FRACTIONNAIRE.
Les expressions algébriques
Les expressions algébriques
Simple distributivité
Chapitre 1 NOMBRES RELATIFS 1) Multiplication 2) Division.
Calcul littéral Identités remarquables
CHAPITRE 3: LES NOMBRES.
- Chap3 - Nombres décimaux-Opérations
L’écriture des grands nombres: les puissances de 10
Les expressions algébriques
Différence de relatifs
Chapitre 7 Calcul littéral.
PRIORITES DE CALCUL I VOCABULAIRE On considère deux nombres a et b
Le calcul algébrique.
Les nombres relatifs (11)
Calcul littéral Double distributivité
Addition – Soustraction - Multiplication
EXPRESSIONS NUMÉRIQUES T.HABIB.
?...1…-13…( )…+…-… …-(-2)…-(5-7)…-2+6…?
MULTIPLICATION DIVISION
Calcul littéral ( suite )
ALGÈBRE Partie 5 La distributivité.
Enchaînement d’opérations
Expressions numériques
?...1…-13…( )…x…/… …-(-2)…-2(5-7)…-2+6…?
Chapitre 1 Nombres relatifs.
Nombres décimaux.
Capsule vidééééeo La multiplication et la division des entiers
Les nombres relatifs 2.
Révision des polynômes.
Soit n un nombre entier supérieur ou égal à 1.
Les règles de calculs avec des additions avec des multiplications
Les Entiers Relatifs Addition Et Soustraction
Fabienne BUSSAC NOMBRES RELATIFS, ADDITION ET SOUSTRACTION, RAPPELS
Opérations sur les nombres relatifs
Enchaînement d’opérations
Les nombres relatifs 2.
Enchaînement d’opérations
M. YAMANAKA – Cours de mathématiques. Classe de 4ème.
Chapitre 1: Nombres relatifs M. FELT
Chapitre 2 Calcul littéral Identités remarquables.
Opérations sur les nombres relatifs Chapitre 1 Classe de 4ème.
La forme exponentielle
Transcription de la présentation:

Opérations sur les nombres relatifs Chapitre 1 Classe de 4ème

I Addition de nombres relatifs. 1. Définition: L'addition est l'opération qui permet de calculer la somme de deux nombres (Ces nombres sont appelés les termes de la somme) Exemple : 12 + 5 = 17 1er terme 2ème terme

2. Nombres relatifs de même signe. La somme de deux nombres relatifs de même signe est un nombre relatif de même signe et dont la distance à zéro est la somme des distances à zéro. Exemples : A = (+4) + (+9) = B = (-6) + (-8) = ( 13) 4+9=13 + ( 14) 6+8=14 (-

3. Nombres relatifs de signes différents. La somme de deux nombres relatifs de signes différents est un nombre relatif dont le signe est celui du nombre qui a la plus grande distance à zéro et dont la distance à zéro est la différence des distances à zéro. Exemples C = (+4) + (-7) = D = (+5) + (-2) = ( 3) - ( 3) +

4. simplification d'écriture a. Pour simplifier l'écriture d'une suite d'additions de relatifs, on peut : - supprimer les signes opératoires des additions, - supprimer les parenthèses puis - supprimer le signe du premier nombre s'il est positif. Exemple E = (+3) + (-5) +(+6) =

4. simplification d'écriture b. Pour simplifier l'écriture d'une suite d'additions de relatifs, on peut : - supprimer les signes opératoires des additions, - supprimer les parenthèses puis - supprimer le signe du premier nombre s'il est positif. Exemple E = (+3) + (-5) +(+6) = 3 - 5 + 6

Pour effectuer un calcul écrit sous forme simplifiée, on peut revenir à l'écriture initiale afin de pouvoir regrouper des termes. Exemple F = -2 + 4 - 8 =

Pour effectuer un calcul écrit sous forme simplifiée, on peut revenir à l'écriture initiale afin de pouvoir regrouper des termes. Exemple F = -2 + 4 - 8 = (-2) + (+4) + (-8) =

Pour effectuer un calcul écrit sous forme simplifiée, on peut revenir à l'écriture initiale afin de pouvoir regrouper des termes. Exemple F = -2 + 4 - 8 = (-2) + (+4) + (-8) =

Pour effectuer un calcul écrit sous forme simplifiée, on peut revenir à l'écriture initiale afin de pouvoir regrouper des termes. Exemple F = -2 + 4 - 8 = (-2) + (+4) + (-8) = (-10)+(+4)

Pour effectuer un calcul écrit sous forme simplifiée, on peut revenir à l'écriture initiale afin de pouvoir regrouper des termes. Exemple F = -2 + 4 - 8 = (-2) + (+4) + (-8) = (-10)+(+4) = -6

II Soustraction de nombres relatifs. 1. Définitions a. Soustraction La soustraction est l'opération qui permet de calculer la différence de deux nombres. b. Opposé L'opposé d'un nombre relatif a est le nombre relatif (noté -a) qui a la même distance à zéro que a et le signe contraire. Exemple:

II Soustraction de nombres relatifs. 2. propriété Soustraire un nombre revient à ajouter son opposé a — b = a + opp(b) = a + (-b) (-b) signifie : « opposé de b » Exemple : Si b = -9 alors (-b) = +9

EXERCICE =(+5)+(+6) =(-5)+(-2) =(+4)+(-8)

EXERCICE =(+3)+(+6) = (+9) =(-3)+(+3) = 0 =(+7)+(-3) = (+4) =(-5)+(-12) = (-17) =(+2,1)+(-4) = (-1,9) =(-7)+(-8,25) = (+1,25)

III Produit de nombres relatifs. 1. Définition La multiplication est l'opération qui permet de calculer le produit de deux nombres. Ces nombres sont les facteurs du produits. 2. propriété Le produit de deux nombres relatifs a pour distance à zéro le produit des distances à zéro. Il reste à connaître son signe: Règles des signes: • Le produit de deux nombres de même signe est positif. • Le produit de deux nombres de signes différents est négatif.

Moyen mnémotechnique L’ami de mon ami est mon ami (+ par + =+) L’ami de mon ennemi est mon ennemi (+ par - = - ) L’ennemi de mon ami est mon ennemi (- par + = - ) L’ennemi de mon ennemi est mon ami (- par - = + )

Exemples A = (-4) x (-2) = (+8) B = (+4) x (+2) = (+8) C = (+4) x (-2) = (-8) D = (-4) x (+2) = (-8) Remarque Multiplier un nombre par (-1) revient à prendre l'opposé. (-1) x 5 = -5 (-6) x (-1) = (+6)

3. Produit de n nombres relatifs. Le signe d'un produit de nombres relatifs dépend de la parité du nombre de facteurs négatifs. Si ce nombre est pair alors le produit est positif. Si ce nombre est impair alors le produit est négatif.

EXERCICE = 56 = -54 = 55 = -4 = -8 = 0

ACTIVITE

4- Effectuer des calculs avec des nombres relatifs. méthode Dans une suite d’opérations avec des nombres relatifs, on effectue dans l’ordre d’abord les calculs entre parenthèses, puis les multiplications et divisions, et enfin les additions et soustractions. exemple : effectue le calcul suivant A = - 4 – 5 x ( - 2 – 6 ) A = - 4 – 5 x ( - 8 ) A = - 4 + 40 A = 36

A toi de jouer Effectue les calculs : B= ( - 3 – 6 )x(6 – 8) C= 12 – (-21)x7 D= -15 + (6 – 9) x (-4)

4- un cas particulier de la distributivité : suppression de parenthèses dans une expression algébrique. (cf activité 5) a) Parenthèses précédées d’un signe « + » méthode Pour ajouter une somme algébrique écrite entre parenthèses, il suffit d’additionner chaque terme de cette somme algébrique : Pour tous nombres relatifs a, b, c et d, on a: a +(b+c −d) = a +b+c −d; autrement dit : on enlève tout simplement les parenthèses exemples : 2 + (3 + 5 - 8 ) = 2 + 3 + 5 - 8 = 2 5 + (9 −1) = 5 + 9 −1= 13

4- un cas particulier de la distributivité : suppression de parenthèses dans une expression algébrique. (cf activité 5) b) Parenthèses précédées d’un signe «  − » méthode Pour soustraire une somme algébrique écrite entre parenthèses, il suffit d’additionner l’opposé de chaque terme de cette somme algébrique : Pour tous nombres relatifs a, b, c et d, on a a −(b+c −d) = a − b − c + d; autrement dit : lorsqu’il y a un signe « − » devant une parenthèse, on change tous les signes à l’intérieur de la parenthèse. exemples : 2 − (3 + 5 - 9 ) = 2 − 3 − 5 + 9 = 3 5 − (-9 +1 – 3 ) = 5 + 9 – 1 + 3= 16

ACTIVITE

IV Quotient 1. Définition : La division La division (décimale) est l'opération qui permet de calculer le quotient de deux nombres. 2. Propriété Le quotient de deux nombres relatifs a pour distance à zéro le quotient des distances à zéro. Il reste à connaître son signe, les règles sont identiques à celles du produit. Il faut se souvenir que « Le signe du quotient, c’est le signe du produit. »

Soit a un nombre relatif. L’inverse de a est noté Exemples : 3. Inverse Soit a un nombre relatif. L’inverse de a est noté Exemples : 4. Propriété importante Diviser revient à multiplier par l’inverse L’inverse de 5 est ; L’inverse de est L’inverse de est