L’analyse des lois des gaz

Slides:



Advertisements
Présentations similaires
Comportement des gaz.
Advertisements

Les gaz.
Comment déterminer une quantité de matière?
Masse en g Quantité de matière en mol Masse molaire en g.mol-1.
Chapitre 03 SUIVI D’une reaction chimique
Chapitre Suivi d’une réaction chimique
Loi de Boyle - Mariotte..
Le comportement des gaz
Chapitre 4 Les gaz.
Définition Nous appelons pression partielle (pp) d'un gaz dans un mélange la pression absolue qu'aurait ce gaz s'il occupait à lui seul le volume total.
Guy Gauthier ing. Ph.D. SYS Été 2013
Le milieu physique.
Comment calculer les quantités de matière ?
Les tableaux d’avancement
Chapitre 3 L’équilibre chimique.
La stoechiométrie : calculs chimiques
Chapitre VI : Thermodynamique chimique
Le comportement des gaz
Les Gaz.
LA CHIMIE PHYSIQUE Le gaz idéal Chapitre 2 Guy Collin,
Chapitre 3 L’équilibre chimique.
L’Équilibre chimique Aspect quantitatif.
Unité 3: Les Fluides Chapitre 8: La masse volumique et la masse d’une substance dans un volume donné.
La masse volumique et la masse d’une substance dans un volume donné
Variables du comportement et lois simples des gaz
Comportement des gaz.
Les gaz.
COURS DU PROFESSEUR TANGOUR BAHOUEDDINE
Couleurs et images.
Chapitre 1 Correction des exercices.
Evolution d’un système chimique
Distinction entre espèces chimiques et éléments chimiques
Chapitre 3 Correction des exercices.
La thermodynamique I.
Variables du comportement et lois simples des gaz
METHODE : Les unités et calculs indispensables en chimie
La neutralisation. C’est la réaction pour laquelle un acide ou une base perd ses propriétés caractéristiques. Comment? En mettant un acide en présence.
Des combustions aux atomes
L’équilibre chimique.
LOIS DES GAZ PARFAITS ET APPLICATIONS
LES PRINCIPES DE LA THERMODYNAMIQUE
Notions Fondamentales
France Métropolitaine Juin 2006
APPLICATION DU 1er PRINCIPE AUX GAZ PARFAITS
Chapitre 9 Correction des exercices.
E. Le mécanisme de réaction
Étude de cas Les gaz parfaits
Éditions Études Vivantes
Loi des gaz parfaits et pressions partielles
Module 4 Les gaz.
Météorologie physique
LA PRATIQUE DU SPORT Les besoins et les réponses de l’organisme
Thermodynamique Avancée
La réaction chimique Chapitre 12 : Les objectifs de connaissance :
Attaque acide du zinc « 37 % massique, densité 1,19 »
1 JE RETROUVE L’ESSENTIEL
Chapitre 13 : Les solutions Les objectifs de connaissance :
Module 3: Les quantités et les réactions chimiques
Module 3: Les quantités et les réactions chimiques Chapitre 6: Les proportions des éléments dans les composés chimiques.
Attaque acide du zinc « 37 % massique, densité 1,19 »
Section 6.2: Les formules empiriques et les formules moléculaires
Module 2: Les réactions chimiques
La Révision Chapitre 6. #1. HgO 5,492 g **après le chauffage** Hg 5,086 g Quel est le pourcentage massique d’oxygène de ce composé?
Temps et évolution chimique
Concentration molaire et quantité de matière
LOI DES GAZ PARFAITS ET PRESSIONS PARTIELLES. POURQUOI UNE AUTRE LOI?
1 Combien y-a-t-il de molécules d'un gaz dans une bouteille ?
Les Gaz La loi générale des gaz.
Le comportement des gaz
نشاط 1: اختيار واستعمال الأدوات الزجاجية V1 = 100 mL :
Transcription de la présentation:

L’analyse des lois des gaz Chapitre 12 L’analyse des lois des gaz

Résultats d’apprentissage: 12.1 La loi combinée des gaz Résultats d’apprentissage: Critères de réussite Je peux expliquer la loi des pressions partielles de Dalton. (F1.5) Je peux énoncer l’hypothèse d’Avogadro et reconnaitre sa contribution à l’approfondissement des connaissances sur le comportement des gaz. (F1.3) Je peux déterminer expérimentalement le volume molaire d’un gaz. (F2.6) Je peux expliquer les lois régissant le comportement des gaz. Je peux déterminer expérimentalement le rapport entre la pression, le volume et la température des gaz et résoudre des problèmes qui portent sur les lois des gaz et leur volume ainsi que la quantité de matière en moles et en masse molaire.

Mise en situation L’implosion de la cannette de boisson gazeuse: http://phymain.unisciel.fr/faire-imploser-une-canette/

Loi combinée des gaz P1V1 = P2V2 T1 T2 Combinaison des relations exprimées par les lois de Boyle- Mariotte et de Charles. On considère que la quantité de gaz demeure constante. T= température en Kelvins. P1V1 = P2V2 T1 T2 Voir exemple page 541 de ton manuel. Modélisation de résolution de problème 1: https://nouvelon.apprentissageelectroniqueontario.ca/d2l/lor/viewe r/view.d2l?ou=8201&loIdentId=176443 Modélisation de résolution de problème 2: https://nouvelon.apprentissageelectroniqueontario.ca/d2l/lor/viewe r/view.d2l?ou=8201&loIdentId=176444

Pratique-toi Complète les exercices #1,2 et 5 de la page 542

La loi d’Avogadro n1 = n2 V1 V2 Loi des gaz selon laquelle, à volume égal, les gaz parfaits, à la même température et la même pression, renferment le même nombre de molécules. Où n1 représente le nombre de moles initial d’un gaz. et n2 représente le nombre de moles final d’un gaz. Le volume augmente proportionnellement avec le nombre de moles de gaz, si à une température et pression constantes (Voir fig12.4 page 545 du manuel.) http://www1.tfo.org/education/episode/24986/hypothese-davogadro n1 = n2 V1 V2

La loi d’Avogadro ( suite) Le volume molaire (v): quantité d’espace occupé par une mole d’une substance gazeuse lorsque mesurer dans les mêmes conditions de température et de pression. v=V n Où v= volume molaire en L/mol; V=Volume et n=mole

La loi d’Avogadro ( suite) À TAPN, soit une température de 298K et pression de 100 kPa, le volume pour un gaz parfait sera 24,8 L/mol. Vérifies tes connaissances sur la loi d’Avogadro: https://nouvelon.apprentissageelectroniqueontario.ca/d2l/lor/viewer/view.d2l?ou=8201&loIdentId=176442 Exemples de calcul voir page 547 et 548 du manuel.

La loi d’Avogadro ( suite) Pratiquons-nous: Page 549 #11 À TPN, 1,0 mol de dioxyde de carbone gazeux a un volume de 22,41 L. Quelle et la masse de 3,0 L de ce gaz. Pratique-toi: Complète les exercices #12, 13, 16 et 19 de la page 549. Questions de révision #1,2,4,5,6,7,8,9,11,12 et 14 de la page 550 de leur manuel de chimie.

12.2 La loi des gaz parfaits La loi des gaz parfaits met en relation la pression (P), le volume (V), la température absolue (T) et la quantité de gaz en moles (n) à un moment donné. PV=nRT  où P  représente la pression (en kPa) V  représente le volume (en L) n  représente la quantité de gaz (en mol) R  représente la constante des gaz parfaits (en kPa•L/mol•K) T  représente la température absolue (en K)

La loi des gaz parfaits La valeur de la constante des gaz parfaits (R) peut être déterminer en utilisant la valeur du volume molaire d'un gaz à TPN. Dans ces conditions, on trouve la valeur suivante: PV=nRT que l'on reformule de la façon suivante: R = P×V n×T où l'on remplace les termes de l'équation par les valeurs à TPN: R= 101,325kPa×22,4L 1,oomol×273,15K R=8,314kPa⋅L/mol⋅K La constante des gaz parfaits est égale à 8,314kPa⋅L/mol⋅K . Il est toutefois important que les unités de mesure des différentes caractéristiques soient respectées afin de pouvoir utiliser cette constante.

La loi des gaz parfaits La loi des gaz parfaits permet de décrire l'interdépendance entre la pression, la température, le volume et le nombre de moles d'un gaz à un moment donné. On peut donc l'utiliser pour trouver une variable inconnue lorsque les trois autres sont connues. Source : http://www.alloprof.qc.ca/BV/Pages/c1009.aspx

Les différentes unités de pression Unité de pression Symbole Atmosphère standard atm Millimètres de mercure mmHg Torr Pascal Pa Kilopascal kPa Bar bar Milibar mbar Livre par pouce carré psi 1 atm = 760 mmHg = 760 Torr = 101 325 Pa = 101,325 kPa = 1,01325 bar = 14,7 psi

P = F S 1 Pa = 1 N/m2 1 atm = 101 325 Pa ≈ 100 kPa Pression (kPa) P = F S 1 Pa = 1 N/m2 1 atm = 101 325 Pa ≈ 100 kPa

Volume (L)

Mole (n) n = m M

La constante universelle des gaz parfaits (kPa L / mol K) R = 8,314 kPa  L mol  K

Température (°C) K = °C + 273,15 °C = K – 273,15 L’énergie cinétique, ou bien, comment rapidement les particules se déplacent dans le système. K = °C + 273,15 °C = K – 273,15

La relation entre les échelles de température Celsius et Kelvin

On utilise l’équation à TPN La loi des gaz parfaits PV = nRT P(kPa)V(L) = n(mol)R(8,314 kPa L)T(K) mol  K On utilise l’équation à TPN c.à.d. 0 °C et 100 kPa ou bien 273,15 K et 100 kPa

Les conditions normales de température et de pression Température (°C) Température (K) Volume molaire d’un gaz parfait Température et pression normales (TPN) 101,325 kPa 0 °C 273,15 K 22,4 L/mol Température ambiante et pression normale (TAPN) 100,0 kPa 25 °C 298,15 K 24,8 L/mol

Les unités de volume molaire, de masse volumique et de masse molaire. Signification Calculs Volume molaire L/mol volume/quantité v = V n Masse volumique g/L masse/volume D = m V Masse molaire g/mol masse/quantité M = m Pour un tableau plus détaillé, voir tableau 12.3 à la page 552 de ton manuel

Exemple 1 Détermine le volume de 100,0 g d’oxygène gazeux à TAPN. PV = nRT m = 100,0 g T = 298,15 K P = 100,0 kPa V = ? Si la masse molaire de l’oxygène est 32 g/mol n = m/M = 100,0 g / (16 x 2) g/mol = 3,125 mol V = (3,125 mol) (8,314 R) (298,15 K) PV = nRT 100,0 kPa V = nRT/P = 77,46 L

Exemple 2 Détermine la température, en °C, de 2,50 mol d’un gaz qui occupe un volume de 56,6 L à une pression de 1,20 atm. n = 2,50 mol P = 1,20 atm = 1,20 atm (101,325 kPa/1 atm) = 121,59 kPa V = 56,6 L PV = nRT ou PV/nR = T T = (121,59 kPa) (56,5 L) 2,50 mol (8,314 R) = 330,519 K = 330,519 K – 273,15 = 57,4 °C

Exemple 3 Un gaz inconnu est composé de 80,0% de carbone et de 20,0% d’hydrogène. Si un échantillon de 4,60 g de ce gaz occupe un volume de 2,50 L à 25,00 °C et à 152 kPa, quelle est la formule moléculaire de ce gaz? T = 25,00 °C = 25,00 °C + 273,15 = 298,15 K P = 152 kPa V = 2,50 L m = 4,60 g R = 8,314 kPa L/mol K Pourcentage de composition = 80,0 % carbone et 20,0% hydrogène

Pour un échantillon de 100 g… 80,0% x 100 g = 80 g de carbone 20,0% x 100 g = 20 g d’hydrogène Pour le carbone: n = 80 g / 12,01 g/mol = 6,661 mol Pour l’hydrogène: n = 20 g / 1,01 g/mol = 19,801 mol 2. Le rapport le plus simple… Carbone: 6,661 mol / 6,661 mol = 1 Hydrogène: 19,801 mol / 6,661 mol = 3 Donc, la formule empirique est CH3

Trouve la formule moléculaire T = 25,00 °C = 25,00 °C + 273,15 = 298,15 K P = 152 kPa V = 2,50 L m = 4,60 g R = 8,314 kPa L/mol K Formule empirique = CH3 Trouve la formule moléculaire Il faut trouver la masse molaire (M) de l’échantillon. Pour trouver la masse molaire de l’échantillon, il faut connaître la quantité en moles (n) de l’échantillon. Nous avons la masse (m) de l’échantillon. PV = nRT n = PV/RT n = (152 kPa) x (2,50 L) (8,314 kPa L/mol K) x (298,15 K) = 0,153299 mol

n = 0,153299 mol Donc, M = m/n = 4,60 g / 0,153299 mol = 30,007 g/mol Formule empirique = CH3 n = 0,153299 mol m = 4,60 g Donc, M = m/n = 4,60 g / 0,153299 mol = 30,007 g/mol

Formule empirique = CH3 M de l’échantillon = 30,007 g/mol Compare la masse molaire du gaz inconnu à celle de la formule empirique… M de la formule empirique = 12,01 g/mol + 3 x 1,01 g/mol = 15,04 g/mol Rapport des masses molaires = 30,007 g/mol/ 15,04 g/mol = 2 Donc, multiplie la formule empirique par 2… CH3 x 2 = C2H6

Exemple 4 Quelle est la masse volumique de l’azote gazeux en grammes par litre, à 25,00 °C et à 126,63 kPa? T = 25,00 °C P = 126,63 kPa M de l’azote = 2 x 14,01 g/mol = 28,02 g/mol D = ?

T = 25,00 °C = 298,15 K P = 126,63 kPa Considère que le volume est de 1,00 L M de l’azote = 28,02 g/mol D = ? D = m/V PV = nRT n = m/M

Avec l’équation PV = nRT trouve la valeur de n: n = PV/RT = (126,63 kPa) x (1,00 L) (8,314 kPa L/mol K) x (298,15 K) = 5,1085 x 10-2 mol 2. Avec l’équation n = m/M trouve la valeur de m: m = n x M = 5,1085 x 10-2 mol x 28,02 g/mol = 1,4314 g

3. Avec l’équation D = m/V trouve la masse volumique: D = m/V = 1,4314 g / 1,00 L = 1,431 g/L

Exemple 5 Un échantillon de 1,58 g de gaz occupe un volume de 500,0 mL à TPN. Calcule la masse molaire de ce gaz. À TPN, donc… T = 273,15 K P = 101,325 kPa Nous savons aussi… V = 500,0 mL = 0,5000 L m = 1,58 g M = ?

T = 273,15 K P = 101,325 kPa V = 0,5000 L m = 1,58 g PV = nRT n = m/M n = PV/RT = (101,325 kPa) x (o,500 L) (8,314 kPa L/mol K) x (273,15 K) = 0,02231 mol M = m/n = 1,58 g / 0,02231 mol = 70,8 g/mol

Pratique-toi Complète les exercices # 21,22,23,24 ,25,28 et 29 de la page 556 de ton manuel.

La loi des pressions partielles de Dalton La pression partielle indique qu’une partie de la pression totale d’un mélange de gaz est attribuable à un seul des composants de ce mélange. Ptotale = Pair sec + Pvapeur d’eau La loi des pressions partielles de Dalton indique que la pression d’un mélange de gaz qui ne réagissent pas chimiquement ensemble est la somme des pressions individuelles de chaque gaz. Voir fig 12.5 page 557 de ton manuel Voir tableau 12.4 page 558 pour trouver les pressions partielles de la vapeur d’eau à différentes températures. Vérifie tes connaissances: complète #7,8,10,11 et 12 de la page 557.

La stoechiométrie des gaz (page 559). ** N’oublie pas que les produits gazeux d’une réaction chimique sont souvent recueillis par déplacement d’eau en laboratoire (voir page 558). Lorsque tu utilises la loi de gaz parfaits pour un gaz recueilli de cette façon, tu dois te servir de la formule ci-dessus pour corriger la P avant de la remplacer dans ton équation. Pgaz sec = Ptotale – Pvapeur d’eau Si des volumes de réactifs et de produits gazeux ne sont mesurés dans les mêmes conditions de T et de P, tu dois te servir de la loi des gaz parfaits pour déterminer les quantités de ces réactifs ou produits qui participent à cette réaction.

Fe(s) + H2SO4(aq)  H2(g) + FeSO4(aq) Exemple (voir page 560 de ton manuel): Quel est le volume d’hydrogène gazeux produit lorsque suffisamment d’acide sulfurique pour qu’il soit en excès réagit avec 40,0 g de fer à 18,0 °C et à 100,3 kPa? T = 18,0 °C = 291,15 K P = 100,3 kPa m Fer = 40,0 g M Fer = 55,85 g/mol Fe(s) + H2SO4(aq)  H2(g) + FeSO4(aq) Calcul le nombre de moles de fer: n=m/M n = 40,0 g/55,85 g/mol= 0,716 20 mol Rapport molaire est 1 mol de H2 : 1 mol de Fe. Donc le nombre de moles d’hydrogène est 0,716 20 mol H2 PV = nRT =(100,3 kPa)V =0,716 20 mol (8,415) (291,15 K) V= (0,716 20 mol (8,415) (291,15 K))/ 100,3 kPA =17,3 L m = 40,0 g M = 55,85 g/mol n = m = M = n = m = M = n = m = M = n =

Pratique-nous Pratique-toi Complètons les exercices #31 et 39 de la page 560. Pratique-toi Complète les exercices #32,33,34,37 et 40 de la page 560

Les formules pour les calculs relatifs aux gaz Masse molaire M = m/n Masse volumique D = m/V Pression P = F/A Loi de Boyle-Mariotte P1V1 = P2V2 Loi de Charles V1/T1 = V2/T2 Loi de Gay-Lussac P1/T1 = P2/T2 Loi combinée des gaz P1V1/T1 = P2V2/T2 Loi d’Avogadro n1/V1 = n2/V2 Volume molaire v = V/n Loi des gaz parfaits PV = nRT Loi des pressions partielles de Dalton Ptotale = Pair sec + Pvapeur d’eau

Devoir Complète les exercices #7,8,10,11 et 12 de la page 557.