La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Application de méthodes de fouille de textes pour l’annotation fonctionnelles de gènes 22 mai 2006 UMR_S 729 Ingénierie des connaissances en santé Natalia.

Présentations similaires


Présentation au sujet: "Application de méthodes de fouille de textes pour l’annotation fonctionnelles de gènes 22 mai 2006 UMR_S 729 Ingénierie des connaissances en santé Natalia."— Transcription de la présentation:

1 Application de méthodes de fouille de textes pour l’annotation fonctionnelles de gènes 22 mai 2006 UMR_S 729 Ingénierie des connaissances en santé Natalia Grabar Inès Jilani Marie-Christine Jaulent

2 Sommaire Contexte Confronter les résultats expérimentaux en biologie à ceux déjà publiés dans la littérature Thématiques de recherche associées Apport de l’ingénierie des connaissances et du traitement automatique des langues (TAL) Travaux de recherche Consortium au sein de la Plateforme « biologie des systèmes » de Paris 5 (C. Néri) En pratique Premiers résultats Perspectives

3 Introduction D’après Stéphane LE CROM (séminaire biopuces, février 2006) Méthodes bioinformatique d'analyse des puces à ADN : analyse de l'image, normalisation et stockage des données

4 Contexte Validation et interprétation des résultats expérimentaux Confrontation avec des connaissances antérieures Ressources La littérature  travail manuel fastidieux Gene Ontology (GO)  une ressource terminologique Les bases de données  nombreuses mais incomplètes Mises à jour manuellement à partir de la littérature en utilisant les termes de GO Recherche active (Gene Ontology Annotation consortium)

5 Contexte Validation et interprétation des résultats expérimentaux Confrontation avec des connaissances antérieures Ressources La littérature  travail manuel fastidieux Gene Ontology (GO)  une ressource terminologique Les bases de données  nombreuses mais incomplètes Mises à jour manuellement à partir de la littérature en utilisant les termes de GO Recherche active (Gene Ontology Annotation consortium) Objectifs Développer des outils informatiques pour extraire des connaissances de sources textuelles en biologie Accélérer le processus de validation

6 Enjeux Recherche d’information sur Internet très coûteuse en temps (analyse de grands volumes de données) Analyse des articles pour extraire la connaissance Plusieurs approches mises en concurrence lors de compétitions internationales

7 U729 : Ingénierie des connaissances en santé Acquérir, modéliser et représenter les connaissances médicales Connaissance implicite et explicite  Extraction de connaissances par des méthodes de fouille de textes Construire des systèmes à base de connaissances (SBC) qui s’intègrent dans la pratique médicale (serveurs d’expertise) Codage et partage du dossier médical, détection de signal en pharmacovigilance, systèmes d’assistance à la décision (alertes), prescription automatique, estimation personnalisée des risques, diffusion des guides de bonnes pratiques, …  Service web : Annotation fonctionnelle de gènes Evaluation Qualité, acceptabilité, impact  Comparer les connaissances extraites des textes avec celles qui se trouvent déjà dans les bases (précision et rappel)

8 Travaux de recherche dans le cadre de la plateforme « biologie des systèmes » de l’université Paris 5

9 Consortium INSERM AVENIR IFR77 – Laboratoire de biologie génomique Christian Néri, Céline Lefebvre, Edouard Hérion CNRS UMR 8145 – MAP5 Antoine Chambaz, CRIP5 – Centre de recherche en Informatique de Paris 5 – équipe IAD Sylvie Després, Valentina Ceausu INSERM UMR_S 729 IFR 58 – SPIM Natalia Grabar, Inès Jilani, Marie-Christine Jaulent

10 Le contexte biologique du projet Clusters obtenus par la méthode Best- Balanced Constraint Procedure* * Lefebvre C, Aude JC, Clément E, and Néri C. Balancing protein similarity and gene co-expression reveals new links between genetic conservation and developmental diversity in invertebrates. Bioinformatics 2005;21(8):

11 Le contexte biologique du projet Clusters obtenus par la méthode Best- Balanced Constraint Procedure* * Lefebvre C, Aude JC, Clément E, and Néri C. Balancing protein similarity and gene co-expression reveals new links between genetic conservation and developmental diversity in invertebrates. Bioinformatics 2005;21(8):

12 Le système envisagé Example de requête :est-ce que ces gènes partagent des fonctions communes ? Annotation fonctionnelle des gènes Sélectionner les articles pertinents GO = Gene Ontology Méthodes de fouille de texte

13 Les objectifs spécifiques Retrouver automatiquement les documents pertinents depuis Medline Filtrage automatique à partir des noms des gènes Score de pertinence pour les documents Créer les ressources lexicales nécessaires Normalisation des termes GO Désambiguïsation des noms de gènes Implémenter des méthodes d’extraction de connaissances Couples (gène, fonction)  annotation fonctionnelle de gènes Développer des services pour les biologistes

14 Les objectifs spécifiques Retrouver automatiquement les documents pertinents depuis Medline Filtrage automatique à partir des noms des gènes Score de pertinence pour les documents Créer les ressources lexicales nécessaires Normalisation des termes GO Désambiguïsation des noms de gènes Implémenter des méthodes d’extraction de connaissances Couples (gène, fonction)  annotation fonctionnelle de gènes Développer des services pour les biologistes Mais aussi Contribuer à la mise à jour les bases de données Identifier de nouvelles connaissances

15 Les objectifs spécifiques Retrouver automatiquement les documents pertinents depuis Medline Filtrage automatique à partir des noms des gènes Score de pertinence pour les documents Créer les ressources lexicales nécessaires Normalisation des termes GO Désambiguïsation des noms de gènes Implémenter des méthodes d’extraction de connaissances Couples (gène, fonction)  annotation fonctionnelle de gènes Développer des services pour les biologistes Mais aussi Contribuer à la mise à jour les bases de données Identifier de nouvelles connaissances

16 Les méthodes d’extraction de connaissances Patrons lexico-syntaxiques (Jilani et al., 2006) repérage par rapport aux schémas réccurrents dans la langue Log-Facteur de vraisemblance (Grabar et al., 2005) cooccurrences stables => relations sémantiques Règles d’association (Ceausu et al., 2006) attraction de mots et de termes Approche interne (en cours) déchiffrage de fonctions encodées dans les noms de gènes

17 Les méthodes d’extraction de connaissances Patrons lexico-syntaxiques (Jilani et al., 2006) repérage par rapport aux schémas réccurrents dans la langue Log-Facteur de vraisemblance (Grabar et al., 2005) cooccurrences stables => relations sémantiques Règles d’association (Ceausu et al., 2006) attraction de mots et de termes Approche interne (en cours) déchiffrage de fonctions encodées dans les noms de gènes

18 Un exemple de PLS by the

19 Les PLS pour l’annotation fonctionnelle de gènes

20 Interface de validation

21 Qualifier les résultats obtenus avec des scores de confiance

22 Les expérimentations réalisées 1) Deux espèces : D melanogaster & C elegans 719 clusters (3851 gènes)  1040 gènes annotés avec llr 2) Deux espèces : H sapiens & C elegans 69 clusters (416 gènes)  158 gènes annotés avec llr & PLS  La validation est en cours

23 Comparer les méthodes par exemple pour le FCM 197 Termes GOtCyk-1 (cael) Ima-2 (cael) Kpna-2 (hosa) Man1a1 (hosa) Snrpn (hosa) Zc410.3 (cael) nuclear chromosomeccllr M phasebppls cytokinesisbpllr, man, pls larval developmentbpman bindingmfman calcium ion bindingmfman DNA methylationbpllr, pls cell cyclebpllrpls embryonic cleavagebp cell wall biosynthesisbpllr man (annotation manuelle); pls (patrons lexico-syntaxiques); llr (log-facteur de vraissemblance)

24 Perspectives Sélection des articles pertinents Prendre en compte l’ambiguïté et la synonymie des noms de gènes et des termes : it, and, wee, ct … Combiner les différentes méthodes d’extraction de connaissance afin qu’elles contribuent à améliorer les résultats Prendre en compte les scores de confiance dans la procédure de validation des couples Rendre le sytème le plus générique possible application à d’autres espèces

25 La méthodologie de validation des couples (gènes fonctions) obtenus Comparer avec les informations contenues dans des bases de données existantes L’utilisation des termes Gene Ontology (Gene Ontology Consortium, 2000) facilite cette évaluation puisqu’ils sont utilisés dans ces mêmes bases et par notre méthode. Compétitions organisées pour l’évaluation d’outils automatiques Est-ce que la méthode adoptée arrive à extraire les informations recherchées ? Validation par les biologistes : Comparaison avec les clusters obtenus par la méthode BBCP


Télécharger ppt "Application de méthodes de fouille de textes pour l’annotation fonctionnelles de gènes 22 mai 2006 UMR_S 729 Ingénierie des connaissances en santé Natalia."

Présentations similaires


Annonces Google