La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

L'oxydo- reduction.

Présentations similaires


Présentation au sujet: "L'oxydo- reduction."— Transcription de la présentation:

1 L'oxydo- reduction

2 Couples redox : définition
Ox symbolise l'oxydant ; Red symbolise le réducteur. On passe de l'un à l'autre par échange de n électrons par l'écriture : Il s'agit de la demi-équation électronique du couple redox Ox / Red. Il ne s'agit pas de l'écriture d'un équilibre chimique.

3 Couples redox et réactions rédox
Soient deux couples redox : Ox1 / Red1 et Ox2 / Red2 On veut écrire la réaction se produisant entre Ox1 et Red2 : Couple n°1 { Ox1 + n1 e Red1 } * n2 Couple n°2 { Red Ox2 + n2 e- } * n1 Bilan n2 Ox1 + n1 Red n2 Red1 + n1 Ox2) (n1.n2 e- échangés) Aucun électron ne doit apparaître dans une réaction chimique redox Cu e Cu Zn Zn e- Bilan Cu2+ + Zn Cu + Zn2+ Il y a 2 électrons échangés dans cette réaction

4 Couples redox et réactions rédox
Une réaction dans laquelle un même élément est simultanément oxydé et réduit est appelée réaction de dismutation Exemple :

5 Couples redox et réactions rédox
Il existe deux façons d'effectuer une réaction redox : Méthode 1

6 Couples redox et réactions rédox
Il existe deux façons d'effectuer une réaction redox : Méthode 2

7 Le nombre d’oxydation (n.o.) d’un élément
C’est un nombre qui se veut caractéristique de l'état d'oxydation d'un élément chimique. Par convention, on le note en chiffres romains. Ions simples : Le n.o. est la charge algébrique de l'ion (en unité e) Cl- : n.o.(Cl) = -I Na+ : n.o.(Na) = +I Fe2+ : n.o.(Fe) = +II Molécules et ions complexes : On attribue fictivement le doublet de liaison à l'élément le plus électronégatif. La charge portée alors par les différents éléments donne, en unité e, leur n.o.

8 Le nombre d’oxydation (n.o.) d’un élément
n.o. de O et H dans H2O :  n.o.(O) = -II et n.o.(H) = +I D'après cette règle d'attribution des n.o., on en déduit que : Pour une molecule, la somme des n.o. vaut 0. Pour un ion, la somme des n.o. vaut la charge de l'ion.

9 Le nombre d’oxydation (n.o.) d’un élément
Cas particuliers • Les peroxydes R-O-O-R (ex : H-O-O-H) n.o.(O) = - I • Les hydrures métalliques (ex : LiH) n.o.(H) = - I • Les molécules diatomiques homonucléaires A2 (ex : Cl2, H2, O2, etc …) n.o.(A) = O

10 Le nombre d’oxydation (n.o.) d’un élément
Calcul pratique du n.o. Sauf cas particulier, la technique de calcul est la suivante : Pour une molécule, la somme des n.o. vaut 0. Pour un ion, la somme des n.o. vaut la charge de l'ion. n.o.(O) = -II et n.o.(H) = +I. MnO4- : n.o.(Mn) = ? n.o.(Mn) = (-2) = +7 = +VII

11 Oxydo-réduction et nombre d’oxydation
Oxydation et réduction : Un oxydant est une espèce dont le n.o. peut diminuer. Un réducteur est une espèce dont le n.o. peut augmenter. Vérification dans l'écriture des couples redox : Dans un couple, un élément chimique voit son n.o. varier ◊ On équilibre classiquement le couple ◊ La variation de n.o. doit correspondre au nombre d'électrons échangés dans le couple. Exemple 1 : MnO H+ + 5 e Mn H2O n.o.(Mn) = + VII n.o.(Mn) = + II Exemple 2 : Cl2 + 2 e Cl- n.o.(Cl) = O n.o.(Cl) = - I

12 Potentiel d’électrode
A tout couple redox Ox + n e Red on peut associer une électrode Les électrodes seront étudiées pratiquement en TP On crée une classification en fonction de leur utilisation Electrodes de première espèce : Les électrodes métalliques : le fil de métal (M) trempe dans une solution contenant un de ses ions (MZ+). Ici : Cu dans une solution de Cu2+

13 Potentiel d’électrode
A tout couple redox Ox + n e Red on peut associer une électrode Les électrodes seront étudiées pratiquement en TP On crée une classification en fonction de leur utilisation Electrodes de première espèce : Les électrodes à gaz : un élément sous forme gazeuse barbote dans une solution contenant l'un de ses ions. Ici : H2(g) barbotant dans une solution de H+.

14 Potentiel d’électrode
A tout couple redox Ox + n e Red on peut associer une électrode Electrodes de seconde espèce : Il s'agit d'une électrode métallique (ex: Hg), en contact avec : un sel peu soluble de ce métal (précipité) (ex : Hg2Cl2(s)) un sel à anion commun (ex : une solution de K+Cl- ) (exemple : l’électrode au calomel saturée)

15 Potentiel d’électrode
A tout couple redox Ox + n e Red on peut associer une électrode Les électrodes seront étudiées pratiquement en TP On crée une classification en fonction de leur utilisation Electrodes de troisième espèce : Métal inerte (inattaquable tel que le platine) plongé dans une solution contenant les formes oxydée et réduite d'un même couple Ox / Red Elle prend le potentiel du couple Ox / Red mis en sa présence

16 Potentiel d’électrode - formule de Nernst
A toute électrode mettant en jeu le couple écrit  Ox + n e  Red on peut associer son potentiel E : R : constante des gaz parfaits T : température (K) n : nombre d’électrons échangés F : constante de Faraday a(Ai) : activité de Ai Ai = soluté a(Ai) = [Ai] en mol.L-1, et c° = 1 mol.L-1 Ai = gaz parfait a(Ai) = avec Pi en bar, et P° = 1 bar Ai = solvant H2O a(H2O) = 1 Ai = solide ou liquide pur a(Ai) = 1

17 Potentiel d’électrode - formule de Nernst
A toute électrode mettant en jeu le couple écrit  Ox + n e  Red on peut associer son potentiel E : E°Ox/Red : E lorsque toutes les espèces (oxydant, réducteur, H+) sont prises dans un état tel que leur activité vaut 1. On dit qu’elles sont dans leur état standard. E°Ox/Red est appelé potentiel standard (ou normal) du couple Ox/Red E°Ox/Red ne dépend que de T.

18 Potentiel d’électrode - formule de Nernst
A toute électrode mettant en jeu le couple écrit  Ox + n e  Red on peut associer son potentiel E :

19 Nécessité et choix d’une électrode de référence
Convention internationale : E°H+/H2(g) = 0,00 V la température T C’est l’électrode standard à hydrogène (ESH)

20 L’électrode au calomel saturé (ECS) Une électrode de référence
A la place de l’ESH, on préfère utiliser une électrode de seconde espèce, comme l’ECS : • son potentiel est constant (EECS = 0,245 V à 298 K) • son potentiel est stable • ses dimensions sont raisonnables

21 Cellules électrochimiques

22 Le pont salin

23 Ecriture conventionnelle de cellules galvaniques
Lorsqu'on lit la pile conventionnelle de la gauche vers la droite, les échanges électroniques résultant des réactions à chaque électrode doivent, par convention, créer un échange électronique de la gauche vers la droite à l'extérieur de la pile. Borne gauche : Borne droite :

24 Ecriture conventionnelle de cellules galvaniques
Borne gauche : Borne droite : Réaction globale de fonctionnement de la pile : Pôle de droite : réduction donc cathode donc pôle positif Pôle de gauche : oxydation donc anode donc pôle négatif

25 Ecriture conventionnelle de cellules galvaniques
Convention et réalité ? électrons Réaction de fonctionnement conventionnelle associée : Pour savoir si la réaction de fonctionnement réel est la réaction conventionnelle, ou l’inverse, on mesure ou on calcule la f.e.m. de la pile e = ED - EG = E1 - E2

26 f.e.m. d’une cellule galvanique
électrons f.e.m. de la pile : e = E(+) - E(-) = ED - EG = E1 - E2

27 Constante d’équilibre d’une réaction redox
A T=298 K :

28 Echelle des E° A T=298 K :

29 Echelle des E°


Télécharger ppt "L'oxydo- reduction."

Présentations similaires


Annonces Google