La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Champs de Markov en Vision par Ordinateur TNS : TTM5104.

Présentations similaires


Présentation au sujet: "Champs de Markov en Vision par Ordinateur TNS : TTM5104."— Transcription de la présentation:

1 Champs de Markov en Vision par Ordinateur TNS : TTM5104

2 Part III : Algorithmes

3 III : Solutions. On ne veut pas seulement modéliser. Il faut calculer la valeur dune estimée. Les modèles ne sont pas simples: souvent ils demandent de grandes ressources en temps de calcul et en mémoire. Les espaces sont énormes et il y a beaucoup de minima locaux. Exemple : le recuit simulé peut prendre des heures même sur les images assez petites.

4 III : Simulation A. Objet : synthétiser des configurations de champs markoviens suivant une certaine distribution de Gibbs. Problème : Z nest pas calculable. On utilise dalgorithmes de relaxation itératifs qui convergent vers la distribution : Metropolis (1953) ; Echantillonneur de Gibbs (Geman 1984).

5 III : Simulation B : MCMC Markov Chain Monte Carlo On pense dune configuration dépendant de temps :. Construction dune chaîne de Markov La chaîne visite plus souvent les régions de haut probabilité

6 III : Simulation C : Metropolis. Tirer dune nouvelle configuration F(t) avec probabilité : Accepter la nouvelle configuration avec probabilité :

7 III : Echantillonneur de Gibbs A Passage de F(t-1) à F(t) : Choix dun point p dans le domaine D. Perturbation de la valeur F(t-1) p. Choix dun point p est fait par : Échantillonnage ; Balayage déterministe.

8 III : Échantillonneur de Gibbs B Tirage dune nouvelle valeur daprès la distribution conditionnelle locale : Z p est la fonction de partition locale.

9 III : Utilisation des Échantillonneurs. Synthèse de textures : Estimée de MAP : optimisation globale. Échantillonneur à température variable : recuit simulé. Estimée moyenne :

10 III : Estimées de MAP. Il y a beaucoup des algorithmes différents, mais ils se regroupent dans trois catégories: Variationels; Stochastiques; Graphiques.

11 III : Méthodes Variationelles. Ils descendent à long du gradient. Rapides, mais normalement on trouve seulement un minimum local. Dépendantes de linitialisation.

12 III : Méthodes Stochastiques. Ils utilisent léchantillonnage pour simuler la probabilité. Très lentes, mais on trouve le minimum global (au moins en théorie). On peut calculer le moyenne (ou dautres quantités statistiques).

13 III : Méthodes Graphiques. Ils utilisent des algorithmes combinatoires sur les graphes. Pas trop lentes, pas trop rapides, et on trouve le minimum global plus ou moins sûrement. Il y a des limites sur la forme de la probabilité. Deux versions differentes: Maximum flow; Graph cuts.

14 III : Méthodes Variationels : En Bref. On pense dune configuration dépendant de temps :. On change S selon le gradient de lénergie. Beaucoup de variations sur cette thème. Problème : ils trouvent les minima locaux et dépendent de linitialisation.

15 III : Recuit Simulé : Relaxation Stochastique Introduction dun facteur de température T : Quand, deviens uniforme. Quand, se concentre sur les maxima globaux de. Engendrer une séquence de configurations avec.

16 III : Recuit Simulé : Descente de Température. On prouve que, si : Puis la configuration quand T=0 sera le minimum globale. Mais il faut attendre ! Plus souvent :.

17 III : Recuit Simulé : Problèmes. En pratique, on doit utiliser une loi de descente de température sous-optimale. La théorème de convergence peut donner limpression que tous ira bien, mais… Expérience avec les algorithmes graphiques, qui trouvent le minimum global dans un temps fini, montre que les lois sous- optimales sont…sous-optimales. Convergence en 100 – 1000 itérations.

18 III : Algorithmes Sous- Optimaux : ICM (Besag 1986). Choix dun point p : balayage déterministe. Remise à jour de p par la valeur qui provoque la plus forte augmentation de probabilité. Echantillonneur de Gibbs à T=0.

19 III : Algorithmes Sous- Optimaux : ICM. Caractéristiques : Algorithme déterministe ; Convergence vers un minimum local ; Initialisation et mode de balayage influent le résultat ; Convergence en ~10 itérations Très utilisé. Cf. gradient.

20 III : Algorithmes Sous- Optimaux : HCF (Chou 1988). Highest Confidence First Mesure de stabilité de la valeur f p à un point p ( est lénergie de la configuration courante) : Les points sont classés dans une pile dinstabilités.

21 III : Algorithmes Sous- Optimaux : HCF (Chou 1988). À chaque itération le point p 0 le plus instable (sommet de la pile) est remis à jour. p 0 devient stable. Les stabilités des points de N(p 0 ) sont ré- evaluées. La pile est réordonnée. Répétez. Caractéristiques : Algorithme déterministe ; Convergence en ~1 itération.

22 III : Autres choses. Algorithmes multi-grilles : Pyramide des étiquettes ; Pyramide des données. Algorithmes multi-échelles : Pyramide des étiquettes ; Données mono-résolution. Approximation du champs moyen.

23 IV : Paramètres. Tous les modèles ont des paramètres. Normalement, ils sont inconnus. Quest-ce quon peut faire ? Deux approches : Bayesien : marginaliser ; Estimation.

24 IV : Marginalisation des Paramètres. Lapproche plus correcte. Souvent très difficile ou impossible. Principe : on marginalise toutes les quantités auxquelles on nest pas intéressé.

25 IV : Paramètres : Estimation. Maximisation de la vraisemblance : Normalement on ne sait pas S : Algorithme EM (Chalmond 1989) : Pas-E : évaluation de lespérance pour ; Pas-M : maximisation par rapport à.

26 Historique 1965 : Abend et al. - théorie des réseaux de Markov : Hammersley-Clifford - théorie des champs markoviens : Woods – théorie des champs markoviens gaussiens : Besag – premières applications des champs markoviens : Kirkpatrick et al. – recuit simulé : Cross et al. – modélisation de textures : Therrien – segmentation des textures : Geman et al. – restauration dimages.


Télécharger ppt "Champs de Markov en Vision par Ordinateur TNS : TTM5104."

Présentations similaires


Annonces Google