La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Métaheuristiques pour loptimisation combinatoire Sébastien Verel Manuel Clergue.

Présentations similaires


Présentation au sujet: "Métaheuristiques pour loptimisation combinatoire Sébastien Verel Manuel Clergue."— Transcription de la présentation:

1 Métaheuristiques pour loptimisation combinatoire Sébastien Verel Manuel Clergue

2 Optimisation Combinatoire S : ensemble de solutions potentielles de cardinal au plus dénombrable (souvent fini de grande taille) Problème combinatoire : Trouver la ou les solutions de S convenable Optimisation combinatoire : f : S -> R fonction à optimiser (ou de coût) Trouver la ou les solutions de S donnant la ou les plus grandes (ou plus petites) valeurs pour f.

3 Optimisation Combinatoire Exemples : –Affectation de fréquence en téléphonie –Le problème du sac-à-dos –Couverture densemble –Découpage de verre sans perte –Routage de véhicules –Le voyageur de commerce –Yield management : gestion de ressource –Horaire de train –… … ………………. et même plus…..

4 Heuristiques Du grec heuriskein : trouver/découvrir (heureka) Une heuristique est plutôt une méthode qui cherche (stratégie)… puisquon ne peut garantir le résultat Définition : une heuristique est une méthode qui cherche de bonne solution (proche de loptimalité) Remarques : Temps de calcul raisonnable Sans garantir faisabilité ou loptimalité. Très large succès : de « un aveu dimpuissance » à « des techniques performantes de résolution »

5 Heuristiques Exemple (très) naïf : lénumération Sur le TSP N villes : (N-1)!/2 solutions possibles Si N=20 prend 1 heure de calcul N=21 prend 20 heures N=22 prend 17,5 jours N=25 prend 6 siècles !

6 Métaheuristiques Classification : –Méthodes exactes de construction : branch and bound, simplex –Algorithme évolutifs : Algo. Génétiques Programmation Génétique Stratégies dévolution –Recherche locale Méthode de descente (Hill-Climbing) Recuit Simulé Tabou …

7 Évaluation des MétaHeuristiques Le problème nest pas tellement de générer une solution, mais de connaître sa qualité Évaluation en moyenne (et écart-type) Évaluation en meilleur solution obtenue Évaluation du compromis entre qualité/coût

8 Recherche Locale Notion de voisinage : Fonction de voisinage N : S -> 2^S Indique les voisins dune solution Exemple: S = {0,1}^N, chaînes binaires de longueur N s1 appartient à N(s2) ssi distHamming(s1,s2) = 1

9 Recherche Locale Algorithme général : 1.Initialisation de s appartenant à S 2.Choisir s dans N(s) 3.Aller à létape 2 si la condition darrêt nest pas vérifiée en générale létape 2 distingue les métaheuristiques

10 Recherche Locale Remarques : –On peut mémoriser la « meilleure » solution rencontrée –Utilisation dune évaluation incrémentale pour améliorer les temps de calcul

11 Recherche Locale Choix à faire : –Représentation de lEspace des solutions faisables –Fonction à optimiser, de coût –Structure du voisinage Tous ces choix peuvent être critiques!..

12 Recherche Locale Le problème et son modèle –Solution exacte à un modèle approximatif ? –Solution approximative à un modèle exact ? Problème P et NP Problèmes de décision –Transformabilité (réductibilité) –NP-dur et NP-complets –P=NP ?? P NP ??

13 Hill-Climber ou Steepest descent 1.Initialisation aléatoire s appartenant à S 2.Choisir le voisin s le plus performant de N(s) pour tout s1 de N(s) f(s1) <= f(s ) 3.Aller à létape 2 si une amélioration est possible Remarque: Sarrête sur optimum local On peut choisir le premier plus performant au lieu du performant

14 Recuit Simulé (SA) Simulated Annealing (Kirkpatrick 83) Inspirer par la physique statistique et les refroidissement des métaux Autorise les déplacements qui dégradent en fonction dune probabilité qui dépend dune température Paccept = exp(- E / T) Si lénergie décroît, le système accepte la perturbation Si lénergie croît, le système accepte la perturbation selon Paccept

15 Recuit Simulé (SA) 1.Sélectionner une solution initiale s Sélectionner une température initiale t > 0 2.Sélectionner au hasard s N(s); = f(s) – f(s); si < 0 alors s = s sinon x=hasard([0,1]); if x < exp(- /t) alors s = s 3.Aller à létape 2 si la condition darrêt nest pas vérifiée actualiser la température t

16 Recuit Simulé (SA) Paramètre de la recherche : –Température initiale : De façon à avoir 80% dacceptation de descente au début –Schéma de refroidissement : T(n+1) = alpha * T(n) Changement à un nombre fixe ditération Changement à un nombre fixe de descente ou de montée –Condition darrêt : nombre maximale ditération température finale convergence vers une solution

17 Recherche Tabou (TS) Méthode proposée par F. Glover en 1986 –Future Paths for Integer Programming and links to Artificial Intelligence Introduire une notion de mémoire dans la stratégie dexploration de lespace de recherche Recherche tabou parce quil y a interdiction de reprendre des solutions récemment visitées

18 Recherche Tabou (TS) A chaque itération, « le moins mauvais » voisin est choisit Pour éviter les cycles, cest à dire la répétition infinie dune séquence de mouvements, les L derniers mouvements sont considérés comme interdits, L étant la taille de la liste tabou À chaque itération, le mouvement effectué est donc le moins mauvais mouvement non tabou

19 Recherche Tabou (TS) 1.Initialisation Une solution initiale s, s * = s 0, c * =f(s) TL = 2. s N(s) tel que x N(s), f(x) f(s) et s TL Si f(s) < c * alors s * = s, c * = f(s) Mise à jour de TL 3. Aller à létape 2 si la condition darrêt nest pas vérifiée

20 Recherche Tabou (TS) Stratégie dintensification : Les meilleures solutions rencontrées sont mémorisées Les propriétés communes en sont dégagées On oriente la recherche vers les régions ainsi définies Stratégie de diversification : On mémorise les solutions les plus visitées On impose un système de pénalités Les mouvements les moins utilisés sont favorisés

21 Recherche Tabou (TS) Aspiration : Consiste à lever le statut Tabou dun mouvement, si il se révèle intéressant En général, le mouvement est choisi quelque soit son état si il conduit à une amélioration de la meilleure solution Taille de la liste tabou : La taille L est à déterminer empiriquement Ni trop longue, ni trop petite Règles statiques/dynamiques

22 Recherche Tabou (TS) Sélection du meilleur voisin : Best Fit : le voisinage est exploré en entier First Fit : un partie du voisinage est explorée Utilisation dune table de calculs : Pour éviter de calculer entièrement le coût de chaque voisin, à chaque itération on mémorise dans une table les modifications au coût de la solution courante associées à chacun des mouvements possibles

23 Paysage de Fitness Définition : (Wrigth 1932) (S,f,V) est un paysage de fitness où : S Ensemble des solutions f : S -> R fonction à optimiser V Relation de voisinage

24 Paysage de Fitness Problème doptimisation: Trouver S opt, f( s opt ) = max { f(s) | s in S } Maximum local: S loc Pour tout s in V(s loc ), f(s) <= f(s loc )

25 Paysage de Fitness et Rugosité Présence optima locaux Régularité du paysage (smooth) Difficulté doptimisation

26 Mesures de Rugosité Nombre doptima locaux Distribution des optima locaux Distances entre optima Par marche adaptative ou analytiquement

27 Micro exemples OneMax : S = {0,1}^N f(s) = #1 Fonction « trap »: …voir tableau

28 Autocorrélation Autocorrélation (Weinberger) : (s 0, s 1, s 2, s 3, ….) marche aléatoire Rho(l) = cov(f(s n), f(s n+l )) / (sig[f(s n )]sig[f(s n+l )]) Longueur de corrélation : 1 / ln(Rho(1))

29 Rugosité - Dynamique Rugosité : Vision dun grimpeur Rugosité : Notion dinformation locale

30 Cause de la rugosité Epistasie : lien entre les gènes ou variables, degré de non linéarité Epistasie équivalent à rugosité NK-Fitness landscapes

31 Conclusion Très bons résultats sur certains types de problèmes Algorithmes faciles à mettre en œuvre Il faut faire les bons choix de paramétrage Solution non garantie Tendance : hybridation des métaheuristiques


Télécharger ppt "Métaheuristiques pour loptimisation combinatoire Sébastien Verel Manuel Clergue."

Présentations similaires


Annonces Google