La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Estimation de la survie comparaison des courbes de survie FRT C4.

Copies: 1
Estimation de la survie comparaison des courbes de survie FRT C3.

Présentations similaires


Présentation au sujet: "Estimation de la survie comparaison des courbes de survie FRT C4."— Transcription de la présentation:

1 Estimation de la survie comparaison des courbes de survie FRT C4

2 Rappel sur les types de variables Qualitative à 2 ou n classes Quantitatives (mesurées) discrètes ou continues Censurées : variables qui évoluent avec le temps linformation peut manquer au moment de lanalyse Ex :- la survie, ou létat vivant ou décédé peut changer au cours du temps - les récidives de maladie pour lesquelles on calculera « la survie sans récidive »

3 Variables censurées On peut transformer une variable censurée : –En variable qualitative : DCD/VV à un instant t par exemple survie à 2 ans oui/non –En variable quantitative : durée de survie elle doit alors être connue pour tous les malades les autres malades sont exclus Dans les 2 cas : perte dinformation, voire biais

4 temps (ans) Survie (%)

5 Définitions (1) Date de début d étude : date de début de recrutement des malades Date de point : date à laquelle on décide de faire les calculs avec les données disponibles à ce moment Date dentrée dun sujet (date dorigine) : date à laquelle un sujet entre dans létude Durée de participation, recul : temps écoulé entre date dentrée et date de point (ou date des dernières nouvelles si antérieure à date de point)

6 Définitions (2) Donnée censurée : donnée quon ne connaît pas à la date de point, par manque de recul: –Si le malade est décédé : sa durée de participation = la mesure de sa survie donnée non censurée –Si le malade est vivant : sa durée de participation est < à sa durée de survie : donnée censurée à droite Exclus vivants : statut connu à la date de point Perdus de vue

7 Patient 1 DCD Patient 2 DCD Patient 3VV Patient 4DCD Patient 5VV Patient 6DCD Patient 7VV Patient 8 VV Patient 9DCD Patient 10VV Inclusions du 1/1/03 au 1/7/03 – date de point au 31/12/04

8 Date Date Etat aux Etat à la Temps de Recul origine dernières dernières date de participation 1/1/2005 (1) nouvelles nouvelles point (mois)- (1) Patient 1 1/1/03 30/9/03 DCD DCD 9 24 Patient 2* 1/3/03 31/1/05 DCD Vivant Patient 3* 1/4/03 31/10/04 Vivant Vivant Patient 4 1/6/03 30/6/04 DCD DCD Patient 5* 1/2/03 31/12/04 Vivant Vivant Patient 6 1/4/03 30/11/03 DCD DCD 8 21 Patient 7* 1/7/03 31/12/04 Vivant Vivant Patient 8* 1/7/03 30/11/04 Vivant Vivant Patient 9 1/5/03 31/10/04 DCD DCD Patient 10* 1/7/03 31/12/04 Vivant Vivant * Données censurées 5

9 Mesure de survie 1.Méthode directe –Ne prend en compte que les malades pour lesquels la durée de survie est suffisante –Ex : survie à 18 mois de la série précédente : 10 malades : 1 malade suivi 17 mois 9 malades suivis > 2 ans non pris en compte4 malades décédés, 5 vivants Survie à 18 mois : 5/9 = 56 %

10 Mesure de survie 2. Méthodes de Kaplan-Meïer et méthode actuarielle Incluent dans lanalyse tous les malades le suivi Reposent sur le principe des probabilités conditionnelles

11 Mesure de survie 2. Méthodes de Kaplan-Meïer et méthode actuarielle Incluent dans lanalyse tous les malades le suivi Reposent sur le principe des probabilités conditionnelles soit S 1, S 2, …..S n les probabilités de survie à 1, 2, …n ans S 2/1 la probabilité de vivre 2 ans, pour les sujets ayant vécu 1 an : vivre 2 ans = avoir vécu 1 an et vivre la 2è année

12 Mesure de survie 2. Méthodes de Kaplan-Meïer et méthode actuarielle Incluent dans lanalyse tous les malades le suivi Reposent sur le principe des probabilités conditionnelles soit S 1, S 2, …..S n les probabilités de survie à 1, 2, …n ans S 2/1 la probabilité de vivre 2 ans, pour les sujets ayant vécu 1 an : vivre 2 ans = avoir vécu 1 an et vivre la 2è année P(vivre 1 et 2 ans) = P(vivre 1 an) x P(vivre 2 ans/ vécu 1 an) S 2 = S 1 x S 2/1 et de façon plus générale S n = S 1 x S 2/1 x S 3/2 x S 4/3 x ……. S n/n-1

13 Mesure de survie La probabilité S i/i-1 peut être estimée sur les sujets ayant un suivi > i années 1.Méthode actuarielle –Considère des intervalles fixes « dates anniversaires » –Calcule à chaque temps la survie, compte tenu des évènements survenus dans lintervalle, mais indépendamment de leur date exacte 2. Méthode de Kaplan-Meïer -Tient compte du jour de survenue des évènements -Ne sintéresse quaux jours où surviennent des évènements

14 Méthode de Kaplan Meïer (suite) On estime les probabilités à partir des observations de décès survenant à des temps inégaux : Soient : - T 1, T 2, T 3, …T i, …T n les temps de décès observés - D 1, D 2, D 3, …D i, …D n le nombre de décès correspondant - N 1, N 2, N 3, …N i, …N n le nombre de malades exposés au risque de décéder juste avant ces évènements, N 1 étant le nombre total de malades à T 0 Intervalle [T 0 – T 1 [ : P(survie) = 1 Intervalle [T 1 – T 2 [ : P(survie à T 2 ) = 1 x (N 1 – D 1 )/N 1 De façon générale, pour tout intervalle [T i – T i+1 [ : la probabilité de survivre à T i+1 sachant quon était vivant à T i est estimé par (N i – D i )/N i À un temps t, la probabilité de survie est le produit des survies conditionnelles calculées pas à pas = probabilité cumulée de survie

15 Calcul de survie selon la méthode de Kaplan-Meïer Temps de Etat à la date IntervalleNiDiSti+1/ti St Participation de point [Ti-i+1[ (mois) [0-8[ DCD [8-9[101 9/ DCD [9-13[ 91 8/ DCD [13-18[ 8 1 7/ VV 18 DCD [18-23[61 5/ VV 19 VV 22 VV 23 VV

16 Courbe de survie selon la méthode de Kaplan-Meïer Survie (%) (mois)

17 Courbes de survie Survie (%) Kaplan-Meïer Actuarielle (mois)

18 Comparaison de deux courbes de survie Principe : comparer les nombres de décès D A et D B observés dans les 2 groupes, aux nombres E A et E B attendus sous H 0 par un test du ² Calcul du nombre de décès attendus E –Ils sont calculés à chaque temps où survient un décès N t = N tA +N tB, nombre total de sujets D t = D tA + D tB, nombre total de décès à ce temps –Sous H0, la proportion de décès est la même dans les 2 groupes E tA = N tA x D t /N t et E tB = N tB x D t /N t –E A et E B sont obtenus en sommant les valeurs à chaque temps

19 Comparaison de deux courbes de survie Le test dit « du log rank » est : – ² 1ddl = (D A – E A )² + (D B – E B ) ² si > 3,84 : rejet H 0 E A E B La comparaison ne peut se faire que si les courbes ne se croisent pas = différences de survie toujours dans le même sens Risque relatif Le rapport D/E = taux relatif de décès, rapport du nombre de décès observés sur le nombre de décès attendus sous H 0 Le rapport des taux relatifs mesure le risque relatif de décès dun groupe par rapport à lautre : RR = D B /E B D A /E A

20 Estimation de courbes de survie par la méthode de Kaplan Meïer Taux de survie Temps (mois) 50 % 100 % Traitement A Traitement B

21 Test du Log rank TempsNb total à risque Nb total décès NANA DADA DC attendus E A NBNB DBDB DC attendus E B x3/40=1, x3/40=1, x5/37=2, x5/37=2, x2/32=1, x2/32=0, x4/30=2, x4/30=1, x2/26=1, x2/26=0,85 5 8, ,58 ² 1ddl = (5-8,42)² + (11-7,58)² = 2,93 8,42 7,58NS

22 P = ,0 0,2 0,4 0,6 0,8 1,0 Survie cumulée Suivi (ans) Foie sain Foie pathologique p = 0,0017 P < ,0 0,2 0,4 0,6 0,8 1,0 Survie cumulée Suivi (ans) Foie sain Foie pathologique p < 0,001 AB survie globale survie sans récidive Probabilité de survie globale et sans récidive selon que le foie est sain ou pathologique 53% 38% 32% 19%

23 Probabilité de récidive selon que le foie est sain ou pathologique 0,0 0,2 0,4 0,6 0,8 1,0 Récidive cumulée Foie sain Foie pathologique p < 0,0001 Suivi (ans) % 62%

24 Excès de poids et survenue du carcinome hépatocellulaire (CHC) chez les malades avec cirrhose virale C p< Probabilité de survie sans CHC Années BMI < 25 kg/m 2 BMI kg/m 2 BMI > 30 kg/m 2 NKontchou et al. Clin. Gastroenterol. Hepatol. 2006


Télécharger ppt "Estimation de la survie comparaison des courbes de survie FRT C4."

Présentations similaires


Annonces Google