La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Énergie et métabolisme Énergie et métabolisme. Energie et métabolisme les lois de la thermodynamique et lordre de lunivers.

Présentations similaires


Présentation au sujet: "Énergie et métabolisme Énergie et métabolisme. Energie et métabolisme les lois de la thermodynamique et lordre de lunivers."— Transcription de la présentation:

1 Énergie et métabolisme Énergie et métabolisme

2 Energie et métabolisme les lois de la thermodynamique et lordre de lunivers

3 Propriété remarquable des êtres vivants ils créent et maintiennent de lordre dans lunivers qui tend toujours vers un désordre plus grand (lois de la thermodynamique) Ordre Organisation à tous les niveaux (de latome aux organismes…) Provient du flux ininterrompu des réactions chimiques

4 2ème principe de thermodynamique : ordre de lunivers « les systèmes évoluent spontanément des états de plus faible probabilité vers des états de plus forte probabilité » Ou Dun état ordonné vers un état désordonné Ou Dun état de faible entropie vers un état de forte entropie univers Soleil énergie cellules ordre chaleur entropie aliments

5 analyse thermodynamique simple dune cellule vivante La cellule ainsi que son environnement immédiat peuvent échanger avec le reste de lunivers de la chaleur mais pas des molécules. Les réactions métaboliques qui ordonnent les molécules de la cellule créent une libération de chaleur qui augmente lagitation au hasard et les distorsions des molécules du reste de lunivers De cette façon, la libération de chaleur par une cellule dans son environnement lui permet dacquérir un degré dordre interne supérieur tandis que le désordre de lunivers dans son ensemble augmente Energie et métabolisme : ordre de lunivers

6

7

8 1er principe de thermodynamique « lénergie peut être transformée dune forme en une autre mais ne peut être crée ni détruite » Energie et métabolisme : gestion de lénergie

9 Réactions chimiques se succèdent de façon séquentielle et sont organisées en réseaux complexes = métabolisme Catabolisme = dégradation et modification de petites molécules organiques en molécules plus petites et atomes anabolisme = fabrication dune extrême variété de macromolécules plusieurs milliers à chaque seconde nécessitent : source datome aliments source dénergie soleil seffectuent à 37° intervention de protéines accélérateurs, les catalyseurs ou enzymes

10 Energie et métabolisme : gestion de lénergie

11 utilisation de catalyseurs = enzymes

12 Energie et métabolisme les sources dénergie cellulaire

13 Source énergétique de la cellule : photosynthèse et respiration utilisent photosynthèse et respiration. fabriquent leur propre matière organique. Autotrophes : Hétérotrophes : Utilisent respiration ou fermentation. transforment la matière organique végétale en matière organique animale.

14

15 La respiration libère de l'énergie. D'où vient cette énergie? Source énergétique de la cellule : respiration du glucose 1 glucose + 6 O 2 6 CO H 2 O + Énergie Des électrons Lorsqu'un électron situé à un niveau élevé passe à un niveau plus bas, il perd de l'énergie. Au cours de la respiration, les électrons du glucose perdent de l'énergie.

16 1 glucose + 6 O 2 6 CO H 2 O + Énergie À la fin de la réaction, les électrons occupent un niveau plus bas. Dans la respiration, les électrons riches en énergie (niveau élevé) du glucose sont transférés à d'autres molécules: les transporteurs. À chaque transfert, l'électron perd de l'énergie. Source énergétique de la cellule : respiration du glucose

17 Électron transféré à un transporteur Électron transféré à un autre transporteur Etc. Électron capturé par l'oxygène Hydrogène "arraché" au glucose Électrons "arrachés" à l'hydrogène Formation d'eau

18 L'énergie dégagée à chaque transfert est convertie en ATP L'ATP formé est libéré dans la cellule

19 La respiration se divise en trois grandes phases: 1.La glycolyse 2.2. Le cycle de Kreb 3. La chaîne de transport d'électrons (ou chaîne respiratoire) Glycolyse et cycle de Kreb:"déshabillage" de la molécule de glucose et extraction des électrons riches en énergie. Chaîne de transport des électrons:Utilisation de l'énergie des électrons pour former de l'ATP. Source énergétique de la cellule : respiration du glucose

20 La glycolyse 2 H + et 2 électrons arrachés 4 ATP produits (2 pour chacun des 2 PGAL produits) 2 ATP consommés Le glucose (C 6 ) est brisé en 2 molécules à 3C (PGAL) Le PGAL est transformé en pyruvate (C 3 )

21 Le cycle de Krebs (ou cycle de l'acide citrique) Le pyruvate contient encore de nombreux électrons riches en énergie. Ils sont extraits dans cette phase. Le pyruvate entre dans les mitochondries. Le cycle de Krebs se déroule dans les mitochondries. Sir Hans Krebs ( ) Prix Nobel 1953 pour la découverte dans les années 30 du cycle qui porte son nom.

22 Le produit à 6C formé perd 2 C et des H pour redonner le produit de départ à 4C et le cycle recommence. L'ACoA (C 2 ) se combine à un produit à 4C pour former un produit à 6C (acide citrique) Le produit à 2C qui en résulte se combine à une coenzyme A (CoA) pour former de l'acétyl coenzyme A (ACoA) Le pyruvate perd 2 H et 1 C 1 ATP a été formé

23 Le citrate (C6) perd 2 C pour redonner un produit à 4C L'ACoA (C2) se combine à l'oxaloacétate (C4) et forme un composé à 6C (citrate) Des H (et leurs électrons) sont transférés au NAD ou au FAD Pyruvate (C3) Le pyruvate perd 1 C et 2H et se combine au CoA pour former de l'ACoA 1 ATP formé

24 Bilan du cycle de Krebs 3 CO 2 produits Pour chaque pyruvate (C 3 ) provenant de la glycolyse, on a: 3 NAD + 3 NADH + 3 H + 1 ADP + P 1 ATP 1 FAD 1 FADH 2 Le glucose a complètement été démoli en CO 2 et H. Seulement 4 ATP ont été produits pour chaque glucose (2 dans la glycolyse et 2 dans le cycle de Kreb).

25 La chaîne de transport d'électrons Se déroule sur la membrane interne des mitochondries. Les électrons riches en énergie provenant du glucose sont transférés à des transporteurs d'électrons situés sur la membrane interne.

26 L'oxygène accepte les électrons à la fin de la chaîne et se combine aux 2 H + pour former de l'eau. Le NADH (ou le FADH 2 ) cède ses électrons riches en énergie à un transporteur d'électrons de la membrane interne de la mitochondrie. Les électrons passent d'un transporteur à l'autre. À chaque transfert, ils perdent de l'énergie. Certaines bactéries utilisent autre chose que de l'O 2 pour accepter les électrons (sultfate ou nitrate) = respiration anaérobie (p. 192)

27 Chaîne de transport d'électrons dans la membrane interne de la mitochondrie Les électrons perdent de l'énergie à chaque transfert.

28 L'énergie des électrons sert à "pomper" des ions H + dans l'espace intermembranaire de la mitochondrie.

29 Accumulation d'ions H + dans l'espace intermembranaire Gradient de concentration : l'espace intermembranaire devient plus concentré en ions H + (plus acide). Gradient électrique : un côté de la membrane devient positif (accumulation d'ions +) et l'autre, négatif (déficit en ions + par rapport aux ions -). Formation d'un gradient électrochimique

30 Gradient électrochimique ==> les ions H + ont tendance à diffuser vers la matrice (= force protomotrice). Ils le font en passant par des ATP synthétases.

31 La force protomotrice (ions H + qui diffusent à travers l'ATP synthétase) permet la formation d'ATP à partir d'ADP et P. Espace intermembranaire Matrice Chimiosmose

32 Le passage des ions H + entraîne la rotation d'une partie de l'ATP synthétase et la formation d'ATP. L'ATP synthétase peut être convertie en un nanomoteur.

33 On peut inverser la rotation et le passage d'ions H + en transformant des ATP en ADP.

34

35 On a fixé un long filament d'actine (une protéine) sur la portion mobile de la protéine pour pouvoir observer le mouvement de rotation.

36 Effets de quelques poisons Le cyanure: bloque le passage des électrons du cytochrome a3 (un des transporteurs d'électrons de la membrane) à l'oxygène. Le dicoumarol ou le 2,4 dinitrophénol : augmente la perméabilité de la membrane aux ions H +. Les ions H + diffusent à travers la membrane sans passer par les ATP synthétases. Leur énergie est convertie en chaleur (et non en ATP).

37 Fermentation Production d'énergie sans utilisation d'oxygène Produit beaucoup moins d'énergie : 2 ATP par molécule de glucose contre 36 pour la respiration Plusieurs types : fermentation alcoolique, fermentation lactique, etc.

38 Un organisme pourrait-il fonctionner en ne faisant que de la glycolyse? La cellule finirait par manquer de NAD +

39 Fermentation alcoolique La transformation du pyruvate en acétaldéhyde puis en alcool permet de redonner du NAD + à partir du NADH

40 Fermentation lactique Le NAD+ est recyclé par la transformation du pyruvate en lactate (acide lactique) Le lactate produit peut être converti dans le foie en pyruvate qui peut ensuite être respiré. Les muscles font de la fermentation lactique s'il n'y a pas assez d'oxygène.

41

42 Catabolisme des divers nutriments


Télécharger ppt "Énergie et métabolisme Énergie et métabolisme. Energie et métabolisme les lois de la thermodynamique et lordre de lunivers."

Présentations similaires


Annonces Google