La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

la couche quantique n n est un nombre entier positif (1,2,3,4,…..  ) l est le nombre quantique secondaire ou azimutal. Il définit la notion de sous couche.

Présentations similaires


Présentation au sujet: "la couche quantique n n est un nombre entier positif (1,2,3,4,…..  ) l est le nombre quantique secondaire ou azimutal. Il définit la notion de sous couche."— Transcription de la présentation:

1

2 la couche quantique n n est un nombre entier positif (1,2,3,4,…..  ) l est le nombre quantique secondaire ou azimutal. Il définit la notion de sous couche et détermine la géométrie des orbitales atomiques. 0  l  n-1 m est le nombre quantique magnétique Il définit une case quantique Il y a 2l+1 valeurs de m (2l+1) orbitales -l  m  +l

3 Exercice 1 1-Combien y a –t-il de valeurs possibles pour le nombre quantique secondaire l si n= 4 ? 2-Combien de valeurs de m sont-elles permises pour un électron dans une sous couche 4d ? 3- Combien de valeurs de m sont-elles permises pour un électron dans une sous couche 3p ? 4- Préciser les nombres quantiques des électrons occupant les orbitales atomiques 3p ? 5- Combien y a-t-il au maximum d’electrons sur une couche de nombre quantique principal n=2, n=3 ? 6- Quel est le nombre d’orbitales atomiques d’une couche de rang n ? Combien contient-elle d’electrons si elle est totalement remplie ?

4 1) Si n = 4, Donc Valeurs possibles de l: l = 0, 1, 2, 3. Il y a donc quatre valeurs de l. 0  l  n-1 0 l 30 l 3 2) valeurs de m permises pour un électron dans une sous couche 4d n=4 4d l =2 (Orbitale atomique d) Donc -2  m  +2 Valeurs permise: m=-2,-1,0,1,2

5 3. Valeurs de m permises pour un électron dans une sous couche 3p ? 3p n=3 l =1 (Orbitale Atomique p) Valeurs permise: m=-1,0,1 -1  m  +1

6 4. Préciser les nombres quantiques des électrons occupant les orbitales atomiques 3p ? n=3 Orbitale p donc l = 1 m = -1, 0, +1 s = +1/2 et -1/2

7 5- Combien y a t’il au maximum d’électrons sur une couche de nombre quantique principal n=2, n=3 ? Pour n=2 : l = 0 m = 0 Orbitale s l = 1 m = -1, 0, +1 Orbitale p Soit au total 4 OA pouvant contenir au maximum huit électrons 0  l  n-10  l  1

8 Pour n=3 : l = 0 m = 0 Orbitale s l = 1 m = -1, 0, +1 Orbitale p l =2 m = -2,-1, 0, +1,+2 Orbitale d Soit au total 9 OA pour n=3: la couche peut contenir au maximum Dix huit électrons 0  l  n-10  l  2 Une couche de nombre quantique principal n contient n 2 OA ; Combien contient-elle d’électrons si elle est totalement remplie ? 2n 2 électrons

9 Exercice2 Indiquer les ensembles possibles des quatre nombres quantiques (n, l, m, s) pour l’electron marque d’un asterisque dans les diagrammes ci-dessous. Choisissez les valeurs de m en les numérotant de – l à + l de gauche à droite. 1) 3p ↑↓ ↑↓ ↑ * 2) 3d ↑↓ ↑↓ ↑↓ * ↑ ↑ 3) 4p * ↑↓ ↑↓ ↑ 4) 4f ↑↓ ↑↓ ↑↓ ↑↓ ↑↓ ↑↓↑ * ↓ 1) 3p n=3, l=1, m=1 s=+1/2 2) 3d n=3, l=2, m=1, s=-1/2 3) 4p n=4, l=1, m=-1, s=+1/2 4) 4f n=4, l=3, m=+3, s=+1/2

10 Exercice 3 1-Rappeler l’ordre de remplissage des différentes orbitales atomiques. Quel est le critère majeur de ce classement ? 2-Preciser les configurations électroniques dans l’état fondamental des atomes suivants : 13 Al, 15 P, 18 Ar, 23 V, 34 Se, 51 Sb. 3- Quel est le nombre d’électrons non apparies associes aux états fondamentaux des atomes dont le numéro atomique est compris entre 11 et 18 ?

11 1) Règle de Klechkowski: - Le remplissage des orbitales s’effectue selon les valeurs de (n+l) croissant. Si 2 valeurs de (n+l) sont égales, le remplissage de la case ayant la valeur de n la plus faible est prioritaire. Cet ordre est basé sur des critères énergétiques, les orbitales sont classées par ordre d’énergie croissante : du niveau energetique le plus faible (le plus négatif) au niveau énergétique le plus élevé (le moins négatif).

12 s (l=0)p(l= 1)d(l=2)f(l=3) 11s 22s2p 33s3p3d 44s4p4d4f 55s5p5d5f 66s6p6d6f 77s7p7d7f l n

13 13 Al : 1s 2 2s 2 2p 6 3s 2 3p 1 15 P : 1s 2 2s 2 2p 6 3s 2 3p 3 18 Ar : 1s 2 2s 2 2p 6 3s 2 3p 6 23 V : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 3 34 Se : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 4 51 Sb : 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 10 5p 3 2) Configuration électronique:

14 3- Nombre d’électrons non appariés associés aux états fondamentaux des atomes dont le numéro atomique est compris entre 11 et 18 ? Z=11 : 1s 2 2s 2 2p 6 3s 1 Z=12 : 1s 2 2s 2 2p 6 3s 2 1 électron non apparié 0 électron non apparié Z=13: 1s 2 2s 2 2p 6 3s 2 3p 1 1 électron non apparié

15 Z=14: 1s 2 2s 2 2p 6 3s 2 3p 2 2 électrons non appariés Z=15: 1s 2 2s 2 2p 6 3s 2 3p 3 3 électrons non appariés Z=16: 1s 2 2s 2 2p 6 3s 2 3p 4 2 électrons non appariés Z=17: 1s 2 2s 2 2p 6 3s 2 3p 5 1 électron non apparié

16 Z=18: 1s 2 2s 2 2p 6 3s 2 3p 6 0 électron non apparié

17 16 + Z -e Attraction Attraction et répulsion + Z Attraction « corrigée » +Z * La charge réelle Z est remplacée par une charge hypothétique Z* La charge nucléaire effective Z* tient compte à la fois de l’attraction noyau-électron et des répulsions électron-électron (effets d ’écran). Atome HydrogénoïdeAtome polyélectronique Modèle de Slater Les autres électrons font écran entre le noyau et l’électron étudié

18

19 18 Calcul de la charge nucléaire effective Z* Pour rendre compte de l’effet répulsif des autres électrons on calcule une charge nucléaire hypothétique plus faible que la charge réelle du noyau. Cette charge hypothétique est obtenue en soustrayant du Z réel les effets d ’écran des autres électrons : Z* = Z -  Slater a énoncé les règles qui permettent d ’exprimer ces effet d ’écran   entre électrons.  = constante d’écran

20 19 REGLES de SLATER 1) Ecrire la configuration électronique de l ’élément en utilisant les groupes suivants et dans l ’ordre suivant : [1s] ; [2s, 2p] ; [3s, 3p] [ 3d] ; [4s, 4p] [ 4d] [ 4f ] ; [ 5s, 5p] [ 5d ] ; [ 5f ]... Groupes de Slater : 2) Valeurs des constantes d’écran Électrons du même groupe :  = 0,35 (sauf pour 1 s ou  = 0,3) Electron d’un groupe plus externe (situé à droite du groupe étudié) :  = 0

21 20 Electrons d’un groupe plus interne (situé à gauche du groupe étudié) a) l’électron étudié appartient à un groupe [ns ; np] Deux cas à distinguer : - Les électrons des groupes plus internes (n-2) ; (n-3) etc.... ont un effet d ’écran  = 1 -Les électrons du groupe immédiatement inférieur (n-1) ont un effet d ’écran de  = 0,85 b) l’électron étudié appartient à un groupe [n d] ou [n f] - Les électrons de tous les groupes plus internes ont un effet d’écran  = 1

22 21 [1s] ; [2s, 2p] ; [3s, 3p] [ 3d] ; [4s, 4p] [ 4d] [ 4f ] ; [ 5s, 5p] [ 5d ] ; [ 5f ]...

23 Exercice 4 Pour tous les groupes d’electrons des atomes suivants, determiner les coefficients d’ecran σ i Et la charge efficace Z* : 5 B, 6 C, 7 N, 8 O, 9 F, 10 Ne. 5 B: [1s 2 ] [ 2s 2 2p 1 ] +5 [1s 2 ] [2s 2 ; 2p 1 ] Z* = Z -  Calcul de  1s :  1s = 1x0,3=0,3 donc Z* 1s = 5 – 0,3 = 4,7 Calcul de  2s2p :  2s2p = (2x0,35) + (2x0,85) = 2,4 donc Z* 2s2p = 5 – 2,4 = 2,6

24 6 C : [1s 2 ] [ 2s 2 2p 2 ] Calcul de  1s :  1s = 1x0,3=0,3 donc Z* 1s = 6 – 0,3 = 5,7 Calcul de  2s2p :  2s2p = (3x0,35) + (2x0,85) = 2,75 donc Z* 2s2p = 6 – 2,75 = 3,25 +6 [1s 2 ] [2s 2 ; 2p 2 ]

25 7 N : [1s 2 ] [ 2s 2 2p 3 ] Calcul de  1s :  1s = 1x0,3=0,3 donc Z* 1s = 7 – 0,3 = 6,7 Calcul de  2s2p :  2s2p = (4x0,35) + (2x0,85) = 3,1 donc Z* 2s2p = 7 – 3,1 = 3,9 +7 [1s 2 ] [2s 2 ; 2p 3 ]

26 8 O : [1s 2 ] [ 2s 2 2p 4 ] Calcul de  1s :  1s = 1x0,3=0,3 donc Z* 1s = 8 – 0,3 = 7,7 Calcul de  2s2p :  2s2p = (5x0,35) + (2x0,85) = 3,45 donc Z* 2s2p = 8 – 3,45 = 4,55 +8 [1s 2 ] [2s 2 ; 2p 4 ]

27 9 F : [1s 2 ] [ 2s 2 2p 5 ] +9 [1s 2 ] [2s 2 ; 2p 5 ] Calcul de  1s :  1s = 1x0,3=0,3 donc Z* 1s = 9 – 0,3 = 8,7 Calcul de  2s2p :  2s2p = (6x0,35) + (2x0,85) = 3,8 donc Z* 2s2p = 9 – 3,8 = 5,2

28 10 Ne : [1s 2 ] [ 2s 2 2p 6 ] +9 [1s 2 ] [2s 2 ; 2p 6 ] Calcul de  1s :  1s = 1x0,3=0,3 donc Z* 1s = 10 – 0,3 = 9,7 Calcul de  2s2p :  2s2p = (7x0,35) + (2x0,85) = 4,15 donc Z* 2s2p = 10 – 4,15 = 5,85

29 Exercice 5 En se basant sur le calcul d’énergie dans l’approximation de Slater : 1- Montrer que la configuration électronique du 20 Ca est en 4s 2 au lieu de 3d 2. 2- La configuration électronique de 21 Sc est-elle en 3d 3 ou en 3d 1 4s 2 ?

30 La configuration électronique la plus stable est celle qui correspond à l’énergie minimale. Première possibilité 20 Ca :│1s 2 │2s 2 2p 6 │3s 2 3p 6 │4s 2 Calcul de la constante d’écran et de la charge efficace pour 4s 2 : σ 4s = (1 x 0.35) + (8 x 0.85) + (10x1) = 17.5 donc Z* 4s = 20 –17.5 = 2.85 Calcul de l’énergie :En = -13,6Z* 2 /n* 2 (pour un e - ) Pour 4s 2 E 4s = -13.6 x 2[(2.85) 2 /(3.7) 2 ] = -16.1 eV E 4s = -16.1 eV

31 Slater définit n* par la règle suivante : n123456 n*1233,744,2 Ceci est un ajustement arbitraire pour faire accorder les énergies atomiques calculées aux données expérimentales

32 Deuxième possibilité 20 Ca : │1s 2 │2s 2 2p 6 │3s 2 3p 6 │3d 2 Calcul de la constante d’écran et de la charge efficace :  3d = (1 x 0.35) + (18x1) = 18.35 Z* 3d = 20 –18.35 = 1.65 Calcul de l’énergie :En = -13,6Z* 2 /n* 2 (pour un e - ) E 3d = -13.6 x 2[(1.65) 2 /(3) 2 ] = -8.2 eV E 3d = -8.2 eV

33 On constate que E 4s < E 3d. Les deux électrons externes du calcium sont dans l’orbitale 4s. La configuration électronique de Ca est alors: │1s 2 │2s 2 2p 6 │3s 2 3p 6 │4s 2

34 La configuration électronique de 21 Sc est-elle en 3d 3 ou en 3d 1 4s 2 ? Première possiblité: 21 Sc : │1s 2 │2s 2 2p 6 │3s 2 3p 6 │3d 3  3d = (2 x 0.35) + (18x1) = 18,7 Z* 3d = 21 –18,7 = 2,3 E 3d = -13,6 x 3[(2,3) 2 /(3) 2 ] = -24 eV E 3d = -24 eV

35 L’autre configuration possible: 21 Sc : │1s 2 │2s 2 2p 6 │3s 2 3p 6 │3d 1 │4s 2 │ σ 3d = 18x1 = 18 Z* 3d = 21 –18 = 3  4s = (1 x 0.35) +(9 x 0.85) + (10x1) = 18 Z* 4s = 21 –18 = 3 Calcul de l’énergie : E 4s3d = -13.6 [1x (3/3) 2 + 2x (3/3.7) 2 ] = -31.5 eV E 4s3d = 31.5 eV Il en ressort que la configuration électronique externe de Sc est en 3d 1 4s 2.

36 Exercice 7 (Examen 2013) En utilisant la théorie de Slater 1- Calculer les charges effectives des groupes de Slater pour les espèces Be et Be + (Be : Z=4). 2- Donner l’expression du rayon et calculer les rayons atomiques des entités Be et Be +. comparer les valeurs trouvées et conclure. 3- Donner l’expression de l’énergie d’un groupe de Slater, calculer les énergies des entités Be et Be+ et en déduire le potentiel d’ionisation de Be.

37 Be :1s 2 2s 2 σ 1s = 1x0,3 = 0,3 Z* 1s =4-0,3=3,7 σ 2s = (0,35x1 + 2x0,85)=2,05 Z* 2s = 4- 2,05= 1,95 Be + : 1s 2 2s 1 Z* 1s =4-(0,3x1)=3,7 Z* 2s = 4- (0,35x0 + 2x0,85) = 2,3

38 2- Le rayon atomique est celui du groupe le plus externe (n le plus élevé): R= a 0 (n* 2 /Z*) R(Å)= 0,53(n* 2 /Z*) R(Be)=0,53(4/1,95)=1,08Å R(Be + )=0,53(4/2,3)=0,92Å Le rayon de Be + est inferieur car la perte d’un électron entraine une plus forte action des protons

39 Expression de l’énergie d’un groupe de Slater, Pour un atome à plusieurs électrons, l'énergie dépend à la fois de n et l puisque les valeurs de l affectent celles de Z*. Chaque électron contribue à une énergie E i telle que L’énergie totale de l’atome est la somme de la contribution de chaque électron i telle que : Avec n : nombre d'électrons n* 2

40 3- calcul des énergies des entités Be et Be+ E Be = 2E 1s + 2E 2s E Be = 2(-13,6)[(3,7) 2 /1 2 + (1,95) 2 /2 2 ]=-398,2eV + E Be + = 2E 1s + 1E 2s + E Be + = (-13,6)[2(3,7) 2 /1 2 + (2,3) 2 /2 2 ]=-390,3eV + PI = E i = E Be + - E Be = 8eV

41 Exercice 8 1- En respectant les règles de remplissage des niveaux électroniques donner la configuration electronique de l’etat fondamental de l’atome de Cr (Z=24), et représenter la couche de valence par les cases quantiques. (Configuration I) 2- Donnez la configuration la plus stable de Cr ainsi que sa couche de valence. (Configuration (II) 3-En appliquant les règles de Slater calculer l’énergie de la couche de valence des configurations I et II.

42 Configuration électronique de l’état fondamental de l’atome de Cr (Z=24) (Configuration (I) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 4 Couche de valence : 4s 2 3d 4 2) La configuration la plus stable de Cr. (Configuration (II) 1s 2 2s 2 2p 6 3s 2 3p 6 4s 1 3d 5 Couche de valence : 4s 1 3d 5

43 3-calcul de l’énergie de la couche de valence des configurations I et II (en appliquant les règles de Slater) Energie de la CV 4s 2 3d 4 Configuration I Groupe de Slater [3d 4 ][4s 2 ] [1s 2 ] [2s 2 2p 6 ] [3s 2 3p 6 ] [3d 4 ] [4s 2 ] Z* 3d (ConfigI) = 24 – [0,35x3 + 1x18] = 4,95 Z* 4s (ConfigI) = 24 – [1x0,35 + 0,85x12 + 10x1] = 3,45 E CV(ConfigI) = 4x(-13,6)x [(Z 2 * 3d(ConfigI ) /3 2 ] + 2x(-13,6) Z 2 * 4s (ConfigI) /(3,7) 2 E CV(ConfigI) =-148,104 -23,65 E CV (ConfigI) =-171,75eV

44 3-calcul de l’énergie de la couche de valence des configurations II et II (en appliquant les règles de Slater) Energie de la CV 4s 2 3d 4 Configuration II Groupe de Slater [3d 5 ][4s 1 ] [1s 2 ] [2s 2 2p 6 ] [3s 2 3p 6 ] [3d 5 ] [4s 1 ] Z* 3d (Config II ) = 24 – [0,35x4 + 1x18] = 4,6 Z* 4s (Config II ) = 24 – [0x0,35 + 13x0,85 + 10x1] = 2,95 E CV(Config II ) = 5x(-13,6)x [(Z 2 * 3d(ConfigI ) /3 2 ] + 2x(-13,6) Z 2 * 4s (ConfigI) /(3,7) 2 E CV(Config II ) =-159,88 -8,65 E CV(Config II ) =-168,5eV

45


Télécharger ppt "la couche quantique n n est un nombre entier positif (1,2,3,4,…..  ) l est le nombre quantique secondaire ou azimutal. Il définit la notion de sous couche."

Présentations similaires


Annonces Google