Suites ordonnées ou mettre de l’ordre
Suites ordonnées ou mettre de l’ordre Arrangement des données numériques par valeurs (p. 4) exemple : tableau 1.3, p. 4. comment le constituer au départ de 1.1 ? exercice : ordonner la variable poids du tableau 1.1 2 types de suites ordonnées : croissantes (valeurs de plus en plus élevées vers le bas) décroissantes (classement inversé) pour nous, généralement suite ordonnée CROISSANTE Étendue des données différence entre le maximum et le minimum dans le tableau 1.3 : 3.500 – 1.100 = 2.400 C/J utilité de l’information : variabilité des données. Ex. : tableau 1.3 : 2.400 si dans un autre pays : seulement 400 variabilités très ≠ information importante au début d’une analyse Ordonner une variable qualitative ?
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions ou grouper les données Idée générale (très importante pour votre étude) données trop nombreuses (pas dans notre exemple, mais souvent si) mettre ENSEMBLE des observations (données, valeurs) identiques voisines objectif : plus facile de lire les données, d’en prendre possession Deux exemples (concernant des pays différents) Deux types de distributions : selon les valeurs observées selon des classes données dites « groupées », « distribuées », « par paquets » par opposition aux données « individuelles » du tableau 1.1 Familles classées par taille Individus classés par âges 1 107.567 0-< 5 ans 203 907 2 187.987 5-<10 ans 217 312 3 160 342 10-<15 ans 234 942 ... …
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.0 Suite ordonnée (Tableau 1.3 (p. 4)) Distribution selon les valeurs Tableau 1.4 (p. 5) Observation Valeur p Valeur de X ou xp Effectif ou poids ou np 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 2.000 5 x10 2.500 6 x1 2.800 7 x2 2.950 8 x7 3.100 9 x8 3.500 10 x6 Total − 11 x5
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.3 Suite ordonnée (Tableau 1.3 (p. 4)) Distribution selon les valeurs Tableau 1.4 (p. 5) Observation Valeur p Valeur de X ou xp Effectif ou poids ou np 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 2.000 5 x10 2.500 6 x1 2.800 7 x2 2.950 8 x7 3.100 9 x8 3.500 10 x6 Total − 11 x5
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.3 Suite ordonnée (Tableau 1.3 (p. 4)) Distribution selon les valeurs Tableau 1.4 (p. 5) Observation Valeur p Valeur de X ou xp Effectif ou poids ou np 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 2.000 5 x10 2.500 6 x1 2.800 7 x2 2.950 8 x7 3.100 9 x8 3.500 10 x6 Total − 11 x5
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.3 Suite ordonnée (Tableau 1.3 (p. 4)) Distribution selon les valeurs Tableau 1.4 (p. 5) Observation Valeur p Valeur de X ou xp Effectif ou poids ou np 1 x11 1.100 2 x4 1.600 3 x3 1.800 4 x9 2.000 5 x10 2.500 6 x1 2.800 7 x2 2.950 8 x7 3.100 9 x8 3.500 10 x6 Total − 11 x5
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 3 au tableau 4 ? au départ d’une suite ordonnée, facile ! exercice d’application : uniquement colonnes « p » et np » un peu de théorie à propos des distributions pour suivre
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 3 au tableau 4 ? au départ d’une suite ordonnée, facile ! exercice d’application : uniquement colonnes « p » et np » un peu de théorie à propos des distributions pour suivre
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 3 au tableau 4 ? au départ d’une suite ordonnée, facile ! exercice d’application : uniquement colonnes « p » et np » un peu de théorie à propos des distributions pour suivre
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 3 au tableau 4 ? au départ d’une suite ordonnée, facile ! exercice d’application : uniquement colonnes « p » et np » un peu de théorie à propos des distributions pour suivre
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 3 au tableau 4 ? au départ d’une suite ordonnée, facile ! exercice d’application : uniquement colonnes « p » et np » dans nos exemples, peu de lignes en moins, mais si n = 10.000.000… un peu de théorie à propos des distributions pour suivre
Les distributions selon les valeurs observées Tableau 1.4 au départ du tableau 1.3 Comment passer du tableau 3 au tableau 4 ? au départ d’une suite ordonnée, facile ! exercice d’application : uniquement colonnes « p » et np » dans nos exemples, peu de lignes en moins, mais si n = 10.000.000… un peu de théorie à propos des distributions pour suivre
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée soit xp le nombre de « i » concernés np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée, soit xp le nombre de « i » concernés np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée, soit xp le nombre de « i » concernés, soit np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée, soit xp le nombre de « i » concernés, soit np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) une ligne = un individu et sa réponse (si on ne s’occupe que de RJC) i xi à chaque « i », on associe « xi » groupées (tableau 1.4) une ligne = une valeur observée, soit xp le nombre de « i » concernés, soit np np xp à chaque « xp », on associe un « np »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.4) : à chaque « xp », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : si « p » lignes actives « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.4) : à chaque « xp », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : si « p » lignes actives « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.4) : à chaque « xp », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : si « p » lignes actives « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.4) : à chaque « xp », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : si « p » lignes actives « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.4) : à chaque « xp », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.4) : à chaque « xp », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.4) : à chaque « xp », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P »
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.4) : à chaque « xp », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P » Notation pour les données individuelles
Les distributions selon les valeurs observées Le retournement statistique (p. 5) données individuelles <> données (re)groupées ou distribuées individuelles (tableau 1.1) : à chaque « i », on associe « xi » groupées (tableau 1.4) : à chaque « xp », on associe un « np » notation avec changement d’indices (risque de confusion) données individuelles (tab. 1.1) : « n » lignes dans le tableau, avec n = le nombre de personnes interrogées avec « i » variant de 1 à « n » données groupées (tab. 1.4) : « P » lignes actives dans le tableau, hors en-tête et total avec « p » variant de 1 à « P » Notation pour les données groupées
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative oui ou non ? pourquoi ? si nécessaire : rappel de l’idée générale = mettre ensemble… Au point de vue méthode : si hésitation, retour à l’idée générale Exemple au départ du tableau 1.1 Intéressant à établir pour comparer avec d’autres pays, par ex. Distribution de la variable « sexe » (source : tab.1.1) p Valeur de X xp Effectif ou poids np 1 Hommes 4 2 Femmes 7 Total − 11
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes distributions en classes un tableau avec moins de lignes
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes distributions en classes un tableau avec moins de lignes
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes distributions en classes un tableau avec moins de lignes
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes distributions en classes un tableau avec moins de lignes
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes distributions en classes un tableau avec moins de lignes
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes distributions en classes un tableau avec moins de lignes
Les distributions selon les valeurs observées Distributions et variables qualitatives (p. 5) Sens de distribuer les valeurs d’une variable qualitative Retour au quantitatif avec des données réelles (ex. : revenus de tous les Belges) selon les valeurs, trop de lignes distributions en classes un tableau avec moins de lignes données lisibles, utilisables
Les distributions en classes Tableau 1.5 au départ du tableau 1.4 Comment passer du tableau 1.4 au tableau 1.5 ? Distrib. selon les valeurs Tableau 1.4 (p. 5) Distribution en classes (Tableau 1.5 (p.6)) ou « Tableau des effectifs et des fréquences » p Valeur xp Effectif np Bornes des classes Centre de classe 1 1.100 1.000 −< 2.000 1.500 5 2 1.600 2.000 −< 3.000 2.500 4 3 1.800 3.000 −< 4.000 3.500 2.000 Total − 11 6 2.800 7 2.950 8 3.100 9
Les distributions en classes Tableau 1.5 au départ du tableau 1.4 Comment passer du tableau 1.4 au tableau 1.5 ? Distrib. selon les valeurs Tableau 1.4 (p. 5) Distribution en classes (Tableau 1.5 (p.6)) ou « Tableau des effectifs et des fréquences » p Valeur xp Effectif np Bornes des classes Centre de classe 1 1.100 1.000 −< 2.000 1.500 5 2 1.600 2.000 −< 3.000 2.500 4 3 1.800 3.000 −< 4.000 3.500 2.000 Total − 11 6 2.800 7 2.950 8 3.100 9
Les distributions en classes Tableau 1.5 au départ du tableau 1.4 Comment passer du tableau 1.4 au tableau 1.5 ? Distrib. selon les valeurs Tableau 1.4 (p. 5) Distribution en classes (Tableau 1.5 (p.6)) ou « Tableau des effectifs et des fréquences » p Valeur xp Effectif np Bornes des classes Centre de classe 1 1.100 1.000 −< 2.000 1.500 5 2 1.600 2.000 −< 3.000 2.500 4 3 1.800 3.000 −< 4.000 3.500 2.000 Total − 11 6 2.800 7 2.950 8 3.100 9
Les distributions en classes Tableau 1.5 au départ du tableau 1.4 Comment passer du tableau 1.4 au tableau 1.5 ? mettre ensemble les valeurs comprises entre : 1.000 -< 2.000 2.000 -< 3.000 3.000 -< 4.000 au départ d’une distribution selon les valeurs : facile !
Les distributions en classes Tableau 1.5 au départ du tableau 1.4 Comment passer du tableau 1.4 au tableau 1.5 ? mettre ensemble les valeurs comprises entre : 1.000 -< 2.000 2.000 -< 3.000 3.000 -< 4.000 au départ d’une distribution selon les valeurs : facile ! Pourquoi un effectif de 5 ? 1 + 1 + 3 = 5
Les distributions en classes Tableau 1.5 au départ du tableau 1.4 Comment passer du tableau 1.4 au tableau 1.5 ? mettre ensemble les valeurs comprises entre : 1.000 -< 2.000 2.000 -< 3.000 3.000 -< 4.000 au départ d’une distribution selon les valeurs : facile !
Les distributions en classes Tableau 1.5 au départ du tableau 1.4 Comment passer du tableau 1.4 au tableau 1.5 ? mettre ensemble les valeurs comprises entre : 1.000 -< 2.000 2.000 -< 3.000 3.000 -< 4.000 au départ d’une distribution selon les valeurs : facile !
Les distributions en classes Tableau 1.5 au départ du tableau 1.4 Comment passer du tableau 1.4 au tableau 1.5 ? mettre ensemble les valeurs comprises entre : 1.000 -< 2.000 2.000 -< 3.000 3.000 -< 4.000 au départ d’une distribution selon les valeurs : facile !
Les distributions en classes Tableau 1.5 : tableau des effectifs et des fréquences Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3
Les distributions en classes Tableau 1.5 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3
Les distributions en classes Tableau 1.5 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3
Les distributions en classes Tableau 1.5 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3
Les distributions en classes Tableau 1.5 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3
Les distributions en classes Tableau 1.5 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 5 premières colonnes du tableau 3
Les distributions en classes Tableau 1.5 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? 2e ligne : 9 = 5 + 4 ligne total : « SO » = « sans objet » = on ne met rien ! Imitation pour l’exercice d’application : au départ du tableau 2, remplir les 5 premières colonnes du tableau 3
Les distributions en classes Tableau 1.5 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? 2e ligne : 9 = 5 + 4 ligne total : « SO » = « sans objet » = on ne met rien ! Imitation pour l’exercice d’application : au départ du tableau 2, remplir les 5 premières colonnes du tableau 3
Les distributions en classes Tableau 1.5 : tableau des effectifs et des fréquences (début) Observer les 3 premières colonnes : description des classes Comment obtenir les colonnes : effectif (np) ? Déjà expliqué ! effectif cumulé (Nk) ? 2e ligne : 9 = 5 + 4 ligne total : « SO » = « sans objet » = on ne met rien ! Imitation pour l’exercice d’application : au départ du tableau 2, remplir les 5 premières colonnes du tableau 3
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Méthode d’application pour : variables (implicitement) continues aussi pour d’autres types, mais parfois seulement en partie (qualitatives) Les classes groupements de valeurs contiguës bornes / doubles comptes & omissions amplitude centre de (la) classe classes ouvertes (pas pour nous dans exercices)
Les distributions en classes : théorie Tableau 1.5 Les effectifs (absolus) ou np nombre d’observations dans la classe p distribuer les observations dans les classes « DISTRIBUTION » notation : 1.500 5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1 n1 : généralisation pour toutes les 1res lignes xp np : généralisation pour toutes les lignes
Les distributions en classes : théorie Tableau 1.5 Les effectifs (absolus) ou np nombre d’observations dans la classe p distribuer les observations dans les classes « DISTRIBUTION » notation : 1.500 5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1 n1 : généralisation pour toutes les 1res lignes xp np : généralisation pour toutes les lignes
Les distributions en classes : théorie Tableau 1.5 Les effectifs (absolus) ou np nombre d’observations dans la classe p observations distribuées dans les classes « DISTRIBUTION » notation : 1.500 5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1 n1 : généralisation pour toutes les 1res lignes xp np : généralisation pour toutes les lignes
Les distributions en classes : théorie Tableau 1.5 Les effectifs (absolus) ou np nombre d’observations dans la classe p observations distribuées dans les classes « DISTRIBUTION » notation : 1.500 5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1 n1 : généralisation pour toutes les 1res lignes xp np : généralisation pour toutes les lignes
Les distributions en classes : théorie Tableau 1.5 Les effectifs (absolus) ou np nombre d’observations dans la classe p observations distribuées dans les classes « DISTRIBUTION » notation : 1.500 5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1 n1 : généralisation pour toutes les 1res lignes xp np : généralisation pour toutes les lignes
Les distributions en classes : théorie Tableau 1.5 Les effectifs (absolus) ou np nombre d’observations dans la classe p observations distribuées dans les classes « DISTRIBUTION » notation : 1.500 5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1 n1 : généralisation pour toutes les 1res lignes xp np : généralisation pour toutes les lignes
Les distributions en classes : théorie Tableau 1.5 Les effectifs (absolus) ou np nombre d’observations dans la classe p observations distribuées dans les classes « DISTRIBUTION » notation : 1.500 5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1 n1 : généralisation pour la 1re ligne de tous les tableaux xp np : généralisation pour toutes les lignes
Les distributions en classes : théorie Tableau 1.5 Les effectifs (absolus) ou np nombre d’observations dans la classe p observations distribuées dans les classes « DISTRIBUTION » notation : 1.500 5 à 1.500, on associe 5, soit le nombre d’observations de la 1re classe x1 n1 : généralisation pour la 1re ligne de tous les tableaux xp np : généralisation pour toutes les lignes de tous les tableaux
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne
Les distributions en classes : théorie Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne
Les distributions en classes : théorie Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne
Les distributions en classes : théorie Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne
Les distributions en classes : théorie Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne
Les distributions en classes : théorie Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne
Les distributions en classes : théorie Sigle de sommation pour les hésitant(e)s explication pas à pas sigle de sommation : on veut faire une somme, une addition on veut faire une somme d’effectifs np à droite du sigle S « p = 1 » : le 1er élément de la somme = l’effectif de la 1re ligne « 3 » : le dernier élément de la somme = l’effectif de la 3e ligne entre le 1er et le dernier, on prend « tout » !
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire) Rappel : « P » = nombre de lignes actives dans le tableau
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation application… au tableau 1.5 application… à tous les tableaux de 3 lignes introduction du sigle de sommation généralisation à un tableau quelconque simplification de l’écriture formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Tableau 1.5 Idée : la somme de l’effectif de toutes les classes donne « n » Traduction de l’idée en langage mathématique, en équation Équivalence entre l’idée initiale et la formule ! formule « officielle » (cf. formulaire)
Les distributions en classes : théorie Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant 3.000 C/J
Les distributions en classes : théorie Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant 3.000 C/J
Les distributions en classes : théorie Effectif cumulé définition : somme des effectifs de la classe k (avec k qui fonctionne comme p) des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant 3.000 C/J
Les distributions en classes : théorie Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant 3.000 C/J
Les distributions en classes : théorie Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant 3.000 C/J
Les distributions en classes : théorie Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant 3.000 C/J
Les distributions en classes : théorie Effectif cumulé définition : somme des effectifs de la classe k des classes qui précèdent (selon un ordre croissant) exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe Interprétation : 9 observations avant 3.000 C/J
Les distributions en classes : théorie Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre distribution : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :
Les distributions en classes : théorie Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :
Les distributions en classes : théorie Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :
Les distributions en classes : théorie Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :
Les distributions en classes : théorie Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :
Les distributions en classes : théorie Effectif cumulé exemple du tab. 1.5 : si k = 2, N2 = l’effectif de la 2e classe autre exemple : si k = 6 et P = 10 (toujours 1 ≤ k ≤ P) si k et P quelconques (1 ≤ k ≤ P) l’effectif cumulé de la dernière classe, soit k = P :
Les distributions en classes : théorie Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !
Les distributions en classes : théorie Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !
Les distributions en classes : théorie Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !
Les distributions en classes : théorie Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !
Les distributions en classes : théorie Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !
Les distributions en classes : théorie Effectif cumulé Formule générale : si k et P quelconques (1 ≤ k ≤ P) Autres effectifs cumulés (pas pour nous) : sans prendre en compte la classe k en prenant en compte les classes supérieures (ou égales) Variables qualitatives et Nk ? Sens ou pas ? Pourquoi ? Pas de sens, car ordre n’a pas de sens ! Variables quantitatives groupées selon les valeurs et Nk ? Sens, car ordre a du sens !
Les distributions en classes Les fréquences (simples ou cumulées) cumulées) Observer les 2 dernières colonnes Comment obtenir la colonne des fréquences (fp) ? fréquences cumulées (Fk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 2 dernières colonnes du tableau 3
Les distributions en classes Les fréquences (cumulées) Observer les 2 dernières colonnes Comment obtenir la colonne des fréquences (fp) ? fréquences cumulées (Fk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 2 dernières colonnes du tableau 3
Les distributions en classes Les fréquences (cumulées) Observer les 2 dernières colonnes Comment obtenir la colonne des fréquences (fp) ? 0,36 = 4/11 fréquences cumulées (Fk) ? Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 2 dernières colonnes du tableau 3
Les distributions en classes Les fréquences (cumulées) Observer les 2 dernières colonnes Comment obtenir la colonne des fréquences (fp) ? 0,36 = 4/11 fréquences cumulées (Fk) ? 0,82 = 9/11 Imitation pour l’exercice d’application : au départ du tableau 2 de l’exercice d’application remplir les 2 dernières colonnes du tableau 3
Les distributions en classes Les fréquences (cumulées) Observer les 2 dernières colonnes Comment obtenir la colonne des fréquences (fp) ? fréquences cumulées (Fk) ? Imitation pour l’exercice d’application : au départ des 1res colonnes du tableau 3 de l’exercice d’application remplir les 2 dernières colonnes
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les fréquences ou « fp » définition : proportion des observations dans la classe p proportion = part = pourcentage = % Si p = 2, f2 = fréquence de la 2e classe sous forme décimale, arrondie à 2 décimales sous forme de % sans décimale interprétation : 36 % des observations sont dans la 2e classe
Les distributions en classes Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »
Les distributions en classes Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »
Les distributions en classes Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »
Les distributions en classes Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »
Les distributions en classes Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »
Les distributions en classes Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »
Les distributions en classes Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »
Les distributions en classes Les pourcentages (%) Pour calculer un pourcentage : Pour f2 : le tout = 11 = n = l’ensemble des individus interrogés la partie = 4 = n2 = l’effectif de la classe 2 qui est une partie des 11 en %, arrondi à 0 décimale en %, arrondi à 2 décimales si pas déjà fait, urgent de trouver la fonction « fix »
Les distributions en classes Les fréquences ou « fp » généralisation : La somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?
Les distributions en classes Les fréquences ou « fp » généralisation : La somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?
Les distributions en classes Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?
Les distributions en classes Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?
Les distributions en classes Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?
Les distributions en classes Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?
Les distributions en classes Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : Attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! Une question ? Pourquoi calculer les fréquences ?
Les distributions en classes Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! (Plus tard) Une question ? Pourquoi calculer les fréquences ?
Les distributions en classes Les fréquences ou « fp » généralisation : la somme de la fréquence de toutes les classes donne 1 ou 100 % « démonstration » : attention aux effets d’arrondis : 0,45+0,36+0,18 ≠ 1,00 ! (Plus tard) une question à propos des fréquences ? Pourquoi les calculer ?
Les distributions en classes Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92 difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total − 190 92
Les distributions en classes Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92 difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total − 190 92
Les distributions en classes Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92 difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total − 190 92
Les distributions en classes Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92 difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total − 190 92
Les distributions en classes Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile (même si ici…) pourquoi ? car totaux différents : 190 ≠ 92 difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total − 190 92
Les distributions en classes Pourquoi calculer les fréquences ? Soit à comparer les résultats en stat dans 2 sections (A et B) : dans quelle section les résultats sont-ils les meilleurs ? Résultats sous forme d’effectifs Conclusion : comparaison difficile pourquoi ? car totaux différents : 190 ≠ 92 (même si ici du simple au double…) difficile voir si résultats meilleurs en A ou B. Or, c’est la question ! solution : passer par les fréquences p Filière A Filière B 1 0 -< 2 6 16 2 2 -< 8 54 23 3 8 -< 10 36 18 4 10 -< 12 32 13 5 12 et + 62 22 Total − 190 92
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS bien de calculer les fréquences !
Les distributions en classes Pourquoi calculer les fréquences ? Résultats sous forme d’effectifs et de fréquences Conclusion : comparaison bien plus aisée Où les meilleurs résultats ? Justifiez. Si hésitation, calculez les np et les fp Que choisir pour analyser une situation ? Variable selon la question : Si comparaison de classes ou d’écoles ? fp Si prévoir le nombre de copies en 2e session ? np Même si une seule section, lecture avec les % plus aisée plus parlante En gros, TOUJOURS intéressant de calculer les fréquences !
Les distributions en classes Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant 3.000 C/J
Les distributions en classes Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant 3.000 C/J
Les distributions en classes Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant 3.000 C/J
Les distributions en classes Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant 3.000 C/J
Les distributions en classes Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant 3.000 C/J
Les distributions en classes Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant 3.000 C/J
Les distributions en classes Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant 3.000 C/J
Les distributions en classes Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant 3.000 C/J
Les distributions en classes Fréq. cumulées ou « Fk » 2 « définitions » : somme des fréquences de la classe k et des classes qui précèdent effectif cumulé de la classe k divisé par n Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Interprétation : 82 % des observations avant 3.000 C/J
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant
Les distributions en classes Fréquences cumulées : quelle formule choisir ? Si k = 2, F2 = fréquence cumulée de la 2e classe formule 1 formule 2 Mais 0,81 ≠ 0,82 ! Problème ? Non, car arrondis : une fois de plus : utilisation de la fonction « fix » à vous de réagir maintenant + exercice dans le syllabus
Les distributions en classes Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe) Fk en cas de variable qualitative ? Pourquoi calculer les Fk ?
Les distributions en classes Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe) Fk en cas de variable qualitative ? Pourquoi calculer les Fk ?
Les distributions en classes Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe) Fk en cas de variable qualitative ? Pourquoi calculer les Fk ?
Les distributions en classes Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe) Fk en cas de variable qualitative ? Pourquoi calculer les Fk ?
Les distributions en classes Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe) Fk en cas de variable qualitative ? Pourquoi calculer les Fk ?
Les distributions en classes Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe) Fk en cas de variable qualitative ? Pourquoi calculer les Fk ?
Les distributions en classes Fréquences cumulées Généralisation : pour k et P quelconques (1 ≤ k ≤ P) Si k = P (fréquence cumulée de la dernière classe) Fk en cas de variable qualitative ? Pourquoi calculer les Fk ?
Les distributions en classes Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? En échec (< 10) ? Inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fk en cas de variable qualitative ? selon les valeurs : cf. p. 9 selon des « classes » : en union <> pas en union Variable quantitative selon les valeurs : exercice d’application Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total − SOb
Les distributions en classes Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? En échec (< 10) ? Inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fk en cas de variable qualitative ? selon les valeurs : cf. p. 9 selon des « classes » : en union <> pas en union Variable quantitative selon les valeurs : exercice d’application Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total − SOb
Les distributions en classes Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? % en échec (< 10) ? % inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fk en cas de variable qualitative ? selon les valeurs : cf. p. 9 selon des « classes » : en union <> pas en union Variable quantitative selon les valeurs : exercice d’application Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total − SOb
Les distributions en classes Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? % en échec (< 10) ? % inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fk en cas de variable qualitative ? selon les valeurs : cf. p. 9 selon des « classes » : en union <> pas en union Variable quantitative selon les valeurs : exercice d’application Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total − SOb
Les distributions en classes Pourquoi calculer les fréquences cumulées ? Indications précieuses pour la comparaison % en échec profond (< 8) ? % en échec (< 10) ? % inférieur à 12 ? Très utiles dans certains calculs (médiane, quantiles… chap. 3) Si hésitation, les calculer et voir… Fréquences (%) Fréquences cumulées (%) p Filière A Filière B 1 0 -< 2 3,2 17,4 2 2 -< 8 28,4 25,0 31,6 42,4 3 8 -< 10 18,9 19,6 50,5 62,0 4 10 -< 12 16,8 14,1 67,4 76,1 5 12 et + 32,6 23,9 100,0 Total − SOb
Les distributions en classes Variables qualitatives et distribution (p. 9) Peut-on calculer des effectifs ? Oui effectifs cumulés ? Non fréquences ? Oui fréquences cumulées ? Non
Les distributions en classes Variables qualitatives et distribution (p. 9) Peut-on calculer des effectifs ? Oui effectifs cumulés ? Non fréquences ? Oui fréquences cumulées ? Non Exemple en page 9 Sans objet p/k xp np Nk fp Fk 1 Marié(e) cout. 2 SO 0,18 Marié(e) EC 3 Divorcé(e) 0,09 4 Célibataire 6 0,55 5 Veuf(ve) 0,00 Séparé(e) Tot. ― 11 1,00
Les distributions en classes Variables qualitatives et distribution Peut-on constituer des « classes » ? Oui : en union <> pas en union p/k xp np Nk fp Fk 1 Marié(e) cout. 2 SO 0,18 Marié(e) EC 3 Divorcé(e) 0,09 4 Célibataire 6 0,55 5 Veuf(ve) 0,00 Séparé(e) Tot. ― 11 1,00 p/k xp np Nk fp Fk 1 En union 4 SO 0,36 2 Pas en union 7 0,64 Tot. ― 11 1,00
Les distributions en classes Variables qualitatives et distribution Peut-on constituer des « classes » ? Oui : en union <> pas en union p/k xp np Nk fp Fk 1 Marié(e) cout. 2 SO 0,18 Marié(e) EC 3 Divorcé(e) 0,09 4 Célibataire 6 0,55 5 Veuf(ve) 0,00 Séparé(e) Tot. ― 11 1,00 p/k xp np Nk fp Fk 1 En union 4 SO 0,36 2 Pas en union 7 0,64 Tot. ― 11 1,00
Les distributions en classes Commentaires finals (ou finaux : au choix) Vocabulaire : une généreuse pagaille effectifs absolus ou relatifs fréquences absolues ou relatives dans ce cours : effectif = nombre absolu fréquence = nombre relatif (%) ailleurs ou autre prof ? Exercices : exercez-vous ! écrire les calculs (au moins quelques uns) en extension avec les chiffres en extension avec les symboles avec les formules condensées si problème avec les %, les arrondis, la calculette…
Les distributions en classes Variables quantitative selon les valeurs : exercice d’application
Les distributions en classes Variables quantitative selon les valeurs : exercice d’application Puis exercices supplémentaires, dont questions d’examens