Institut de Génomique Fonctionnelle

Slides:



Advertisements
Présentations similaires
GERPISA Eleventh International Colloquium June 11-13, 2003 Paris The Origins and the Limits of the Productive Models Diversity Research questions and research.
Advertisements

Table des matières En famille Part 1 Ma famille Subject pronouns
Pharmacocinétique et pharmacodynamie: principes de base.
Le métabolisme Phospho-calcique
BIOLOGIE DU DEVELOPPEMENT
CR EACS Cologne Novembre LBPE9.7/8 - Prevalence of proximal renal tubular dysfunction (PRTD) and associated factors in HIV-infected patients,
UMR CNRS 6022 Génie Enzymatique et Cellulaire (Directeur : A
1 La bibliométrie pour l'évaluation stratégique des institutions de recherche : usages et limites Indicators for strategic positioning of the research.
Revenir aux basiques !. 1 Revenir aux basiques Processus Nécessité daméliorer la Maîtrise les Offres et Projets: lanalyse des causes racines montre un.
Katherine Gray-Donald, PhD. THE GOOD NEWS Being a little overweight is protective for your health Losing weight means losing muscle mass so be careful.
Cliquez et modifiez le titre Cliquez pour modifier les styles du texte du masque Deuxième niveau Troisième niveau Quatrième niveau Cinquième niveau 1 Regulation.
Division of Prevention and Control of AIDS, Tuberculosis and Malaria | 25 January January |1 | Epidémiologie de la Co-infection TUB/VIH et.
Reflux gastro-oesophagien et toux chronique de l’adulte
L’état de la question La stimulation du transport de glucose en réponse à l’insuline est diminuée dans le muscle du diabétique de type 2, en raison d’une.
L’innovation thérapeutique en Oncologie
Cours nationaux de DES de Radiothérapie oncologique Nancy – 2 au 4 février 2012 Alberto BOSSI – Institut Gustave Roussy Villejuif Résultats fonctionnels.
Résumé Une altération de l’ADN entraine une translocation de p53 dans le noyau. Cette translocation a lieu grâce au complexe dynéine/dynactine via le réseau.
CHU X Bichat-Cl Bernard
Une autre méthode de génomique inverse : TILLING (targeted induced local lesins in genomes, Comai, Henikoff, 2001) Applicable a tous organismes, produit.
ARA2 et antagoniste calcique : Une pharmacologie séduisante
Révision (p. 130, texte) Nombres (1-100).
Hyperuricémie et insuffisance rénale chronique en 2012
L’activation de ERK induite par EGF provoque la dissociation de l’heterodimere -caténine /-catenine et la transactivation de la -catenine via ck2.
Rôle des CYP dans la synthèse d’oxylipides chez l’homme
Presentation Information
Quelques rappels et quelques nouveautés (BIO2 poly 1)
Alimentation et Métabolisme des Xénobiotiques
2014 CIPAC/FAO/WHO Meeting Liège, Belgium 17 – 26 June 2014
Comparative Genomic Hybridization (CGH)
How to solve biological problems with math Mars 2012.
8th Washington group Assessing the consequences of chronic diseases on functional health Emmanuelle Cambois INED Resarch Unit « Mortality, Health, epidemiology.
DIFFERENTIAL EXPRESSION BETWEEN CF HUMAN AIRWAY EPITHELIAL CELL LINES AND NORMAL CELLS Grégory Voisin, Chantal Massé, André Dagenais, Sébastien Lemieux.
EUROPEAN ASSOCIATION OF DEVELOPMENT RESEARCH AND TRAINING INSTITUTES ASSOCIATION EUROPÉENNE DES INSTITUTS DE RECHERCHE ET DE FORMATION EN MATIÈRE DE DÉVELOPPEMENT.
Evolution Darwinienne du Cancer
QUALITY OF RIVERS IN THE ARTOIS-PICARDIE WATER BASIN
1 La promotion de la santé ancrée dans la loi Le mandat de Promotion Santé Suisse est ancré dans la loi fédérale du 18 mars 1994 sur lassurance maladie.
Induction de la phase I & conséquences métaboliques
BICH 6423 Mécanisme et régulation de l’activité des macromolécules
PHARMACOCINETIQUE Cours n°3 Dr J.CATTELOTTE Radiopharmacien
Tabagisme: la situation épidémiologique en Suisse
Études DICE : La maîtrise glycémique au Canada
Trouble du tonus Une des principales causes intrinsèques des chutes post-AVC Contribution des éléments neuraux et non-neuraux, donc le réflexe d’étirement.
Roles of lipoproteins transport of triglycerides from intestine & liver to peripheral tissues (dietary & stored fatty acids) transport of cholesterol &
Céline Gil DESC Réanimation Médicale Juin Contexte Incidence du sepsis aux E-U : cas Taux de mortalité du sepsis sévère – 25 à 30 % selon.
J. Duranteau Hôpital de Bicêtre - Université Paris-Sud XI Réponse cellulaire à lhypoxie.
LE SYSTEM DIGESTIF Biologie F 11 CHS
Introduction aux Virus
La toxicocinétique dans l’évaluation des risques
La clairance rénale Alain Bousquet-Mélou
Natural pain-killing chemical synthesized Making conolidine in the lab could further drug research 23 mai 2011 ScienceNews Couronne de Néron ou Fleur moulin.
Guigage axonal dans le système nerveux ventral chez Drosophila: rôles du récepteur DRL et de son ligand WNT5 Jean-Maurice Dura Institut de Génétique Humaine.
Jean-Maurice Dura Institut de Génétique Humaine
La cellule de Langerhans
Article : Parlati et al PNAS 99 : Sur le site des données génomiques de la levure Rechercher le gène codant.
G protein coupled receptors Tout ce qu’on oublie, tout ce qu’on vous cache au sujet des GPCRs...
How to best manage HIV patient ?
Inhibition du métabolisme de phase 1 et conséquences
Belgian Breast Meeting Senator F. Roelants du Vivier 13th october.
Slide 1 of 39 Waterside Village Fête ses 20 ans.
5 avril 2008 Dr Jérôme MATHIEU
Métabolisme hépatique des médicaments
Alimentation et métabolisme des xénobiotiques MTB Anne-Sophie Levret Katrin Hoffmann.
Co-expression = fonction (Eisen et al., PNAS 1998)
Métabolisme des xénobiotiques chez les suidés
Réponse innée du SI : 1ère ligne de défense (↑ réponse anti-microbienne) Vitamine D: rôle majeur vis-à-vis de M. tuberculosis Suite de l’article de Science.
Prodrogues : nature, intérêts et limites
Eléments de synthèse du 3ème congrès mondial de Neuro-Oncologie
Synapse & message nerveux
Fig. 4 Dynamic sex-specific expression of androgenic and glucocorticoid factors. Dynamic sex-specific expression of androgenic and glucocorticoid factors.
siRNA-optimized Modifications for Enhanced In Vivo Activity
Transcription de la présentation:

Institut de Génomique Fonctionnelle Inserm Institut national de la santé et de la recherche médicale Régulation de l’expression des enzymes du métabolisme des médicaments par les xénorécepteurs CAR et PXR et conséquences physiopathologiques. Jean Marc Pascussi Institut de Génomique Fonctionnelle Inserm U661, Montpellier Jean-marc.pascussi@inserm.fr

Xenobiotics: foreign chemicals Inhaled Pollutants Industrial chemicals Pesticides Toxins produced by molds, plants and animals Drugs Ingested absorbed

Les xénorécepteurs, sentinelles moléculaires de l’immunité métabolique PXR Phase I Phase II métabolisme élimination AhR Phase III transporteurs CAR 5

Different strategies for activating transcription factors

Nuclear Hormone Receptors superfamily

The Nuclear Receptor Gene superfamily

Nuclear receptors

General scheme for activation of gene transcription by NRs The paradigm … Robyr, Wolffe, Wahli Mol. Endocrinol 2000

Les xénorécepteurs CAR et PXR Expression Organes de la détoxication: foie (hépatocytes) et tracus digestif (entérocytes) CAR PXR

CAR and PXR coordinate the “metabolic immunity” in response to xenochemicals or endogenous activators CAR and PXR are 2 master xenobiotic receptors that regulate the expression of genes involved in xenobiotic and drug metabolism and clearance. In silico screening have identified putative PXR/ RXR binding sites in the regulatory regions of f281 genes involved in encoding drug-metabolizing enzymes and 97 genes involved in encoding drug transporters

Nuclear Receptor PXR (NR1I2) … the master xenosensor

Nuclear receptor CAR (NR1I3) Xenosensor CAR exhibits many similarities with PXR. They are both members of the same subfamily (NR1I), form heterodimers with RXR, bind to same response elements and are expressed in the same tissues. However there are several difference between PXR and CAR. First, many CAR activators such as phenobarbital and bilirubin are not ligands, but trigger the nuclear translocation of the receptor. Second, CAR has a potent constitutive activity in the absence of ligand. This is due to the fact that LBD-AF2 domain of the protein interacts with various coactivators including SRC-1 and the peroxisome proliferator-activated receptor gamma coactivator-1 (PGC-1) in a ligand-independent manner. Third, inactivated CAR is cytosolic in differentiated cells such as hepatocytes. Finally, CAR may be de-activated by inverse agonists such as androstane or clotrimazole (for hCAR).

(d’après Handschin C & Meyer UA. Pharmacol Rev, 2003; 55, 649-73) Schéma de l’hétérodimère CAR-RXR ou PXR-RXR en présence de leurs ligands et différentes organisations des HREs. L’annotation x correspond au nombre de nucléotides entre les deux motifs (d’après Handschin C & Meyer UA. Pharmacol Rev, 2003; 55, 649-73) CAR ou PXR RXR Acide rétinoïque 9-cis Ligand Gène cible

Les xénorécepteurs CAR et PXR partagent les mêmes NRE 2B6 3A4 2B6 3A4

CAR and PXR regulate the bodies 'garbage-disposal system.' Phase 0 OATP2 Uptake Phase I CYP2A,2B,3A Carboxylesterases Phase II GST SULT2 UGT1A PAPSSP2 Solubilisation Phase III Transport MDR1A,1B MRP3… excretion

Les xénorécepteurs CAR et PXR Ligands/activateurs PXR (Polygamic Xenobiotic Receptor ?) Médicaments: Antibiotiques (rifampicine,etc.)‏ Glucocorticoides, RU486, PCN Antifongiques (clotrimazole)‏ Anticancéreux (paclitaxel, codermolide, ixabepilone, tamoxifene, cyclophosphamide)‏ Inhibiteur de protéases virales (amprenavir, ritonavir)‏ Inhibiteurs des pompes à protons (Benzimidazoles)‏ Bloqueurs des canaux calciques (nifedipine)‏ Alimentation/Phytothérapie: Mille pertuis gluglustérone b-carotène Ginko Biloba Pesticides Contaminants environnementaux CAR Médicaments: Clotrimazole (agoniste inverse)‏ Phenobarbital, phénytoïne Phytothérapies: Artémise Pesticides CITCO (agoniste)‏ rifampicine phénobarbital CITCO 232.17 g.mol-1 437 g.mol-1 823 g.mol-1

Watkins et al. Science 2001; Chrencik et al. Mol Endocrinol 2005 hPXR LBD crystal structure (2.6 A resolution) Large and flexible ligand-binding pocket Presence of 2 additional strands of b-sheet Hydrophobic ligand-binding pocket Can accommodates a single hydrophobic ligand in multiple conformation Absence of a highly constrained pocket allows for molecular flexibility and plasticity in ligand recognition Bound ligand= SR12813 Watkins et al. Science 2001; Chrencik et al. Mol Endocrinol 2005 22

Plasticity in the PXR Binding Pocket SR12813 hyperforin 1280 Å 1544 Å Receptor Volume of ligand pocket (A3) ER 476 VDR 871 PXR 1250-1550 CAR 1120

hCAR/RXR LBD heterodimer crystal structure (2.6 A resolution) RXR CAR Bound ligand: CITCO SRC-1 peptide Vol= 570-676 A Xu et al. Mol Cell 2004

CAR activators provoke CAR nuclear translocation CAR-GFP in human hepatocytes In vivo in mice NT PB CITCO

Mécanismes d’activation des xénorécepteurs CAR et PXR Citco AMPc/AMP AICAR OA CAR AMPK LKB1 Thr-38 PB ? PP2A CAR cofactors Thr-38-P CCRP PKC CAR PXR RXR HSP PXR RIF cytoplasme noyau 26

Complementary roles of CAR and PXR toward xenobiotics recognition ? PXR, CAR

Species differences in CAR and PXR activation

Variation in LBD consistent with in vivo species differences in response to inducers (CYP3A1 DR3)2-tk-CAT

CAR and PXR humanized mice Wolf et al. J Clin Invest. 2008

Ying and Yang of CAR and PXR Xenosensors that protect the body from a multitude of foreign chemicals (xenobiotics) and endogenous toxic compounds xenobiotic RXR CAR/PXR Drug-drug and food-drug interactions Interindividual variability in drug response Endocrine disruption VitD3, T3 and lipids metabolism

Major Cytochrome P450s involved in the metabolism of clinically used drugs ... ... are PXR and CAR target genes

Nuclear receptor Activating drugs CAR and PXR are activated by widely used drugs and top selling phytochemicals Nuclear receptor Activating drugs PXR amprenavir, avasimibe, bosentan, carbamazepine, ciglitazone, clotrimazole, cortisone, corticosterone, cyclophosphamide, dexamethasone, efavirenz, exemestane, hydrocortisone, hyperforin, lovastatin, mifepristone, nelfinavir, nifedipine, omeprazole, paclitaxel, phenobarbital, phenytoin, rifabutin, rifampicin, ritonavir, simvastatin, spironolactone, tamoxifen, 4-hydroxytamoxifen, troglitazone, troleandomycin, St John’s wort, Kava, Sophora flavescens CAR CITCO, phenobarbital, phenytoin Garlic, Ginkgo

CAR and PXR xenosensors are involved in drug-drug interactions CYPs CYP enzymes XeR RXR Drug A OH Drug B Inactivation activation

Xenosensors and drug-drug interactions «Fatal paracetamol poisoning in an epileptic (phenytoin)» Minton et al. 1988 Hum Toxicol «Loss of analgesic effect of morphine due to coadministration of rifampin » Fromm et al. 1997 Pain

Xenosensors and diet-drug interactions «Profound drop of cyclosporin A whole blood through levels caused by St. John’s wort (Hypericum perforatum)» Breidenbach et al. 2000 Transplantation

Role of CAR and PXR in drugs-induced osteomalacia and osteopenia ? «Rifampicin induced osteomalacia» Shah et al. 1981 Tubercle «Calcium metabolism during rifampicin and isoniazid therapy for tuberculosis» Brodie et al. 1982 J R Soc Med. «Osteomalacia associated with carbamazepine/valproate» Karaaslan et al. 2000 Ann Pharmacother «Antiretroviral therapy and the prevalence of osteopenia and osteoporosis : a meta-analytic review» Brown et al. 2006 AIDS.

Déficits en vitamine D et ostéomalacies consécutives à la prise prolongée de médicaments… sur la piste de CAR et PXR 25(OH)D3 1,25(OH)D3 1,24,25(OH)D3 (inactive) 7 déhydroxycholestérol CYP27A1 CYP27B1 CYP24A1 VDR RXR PXR RXR VDR RXR RXR CAR CYP3A4 (DR3, ER6) CYP2B6 (DR4) CYP2C9 (DR4) SULT2A1 (IR0) NRE Thummel et al. Mol Pharm 2001 Drocourt et al. J Biol Chem 2002 Echchgadda et al. Mol Pharmacol 2004

Les activateurs de CAR et PXR augmentent l’expression et l'activité de la CYP24 dans l’hépatocyte humain Pascussi , 2005, JCI Lambert 2008 TAP

CYP24 : nouveau gène cible de CAR et PXR

CAR et PXR transactivent les VDREs du gène CYP24 Konno 2008 Mol. Pharmacology HepG2 HuH7 HuH7

The VDR-PXR cross-talk CYP3A4 CYP24 XeR Drocourt 2002 JBC, Xu 2006 Mol P, Pascussi 2005 JCI, Moreau 2007 BBRC, K onno 2008 MP, Lambert 2008 TAP

CAR, PXR et la stéatose hépatique non alcoolique induite par certains médicaments. Rifampicine traitement contre la tuberculose Stéatose hépatique Morere 1975 Sem Hop Carbamazepine traitement antiépileptique Stéatose hépatique Oscarson 2006 CPT Phenobarbital Stéatose hépatique Calandre 1991 ANS Nifedipine traitement contre l’hypertension Stéatose hépatique Babary 1989 J Hep Nakamura 2007 JBC

Culture primaire d’hépatocytes humains Etudes comparatives de transcriptomes d’hépatocytes humains ... sur la piste d’un acteur peu connu de la lipogénese : Spot14 Culture primaire d’hépatocytes humains Extraction ARN Traitements (8 & 40h): DMSO 0.1% Phénobarbital (0.5mM) Rifampicine (10M) CITCO (100nM) Protocole double couleur - ARN de cultures traitées - ARN de référence Spot14, THRSP (Chr. 11q13.5/14.1) 143AA, 17kDa, Pi=4.75

Les activateurs de PXR augmentent l’expression de Spot14 dans l’hépatocyte humain. 5 10 15 20 25 30 Actin CYP3A4 CYP2B6 S14 CTRL Rif 0,3 (PXR) Rif 3 (PXR) Rif 30 (PXR) SR12813 (PXR) PAX (LXR) T09 (PXR + LXR) T3 (T3R) FT285 mRNA fold induction

Spot14 est un gène cible de PXR SFN

L’élément TRE de promoteur du gène Spot14 est nécessaire à l’action de CAR et PXR

Les activateurs de PXR augmentent l’expression de la FASN dans l’hépatocyte humain.

L’expression de Spot14 est nécessaire à l’induction de la FASN par PXR

L’activation de PXR provoque une accumulation d’acides gras dans l’hépatocyte humain. Analyses lipidomiques: Quantification des acides gras dans les hépatocytes humains chromatographie liquide à ultra haute performance (UPLC) et spectrométrie de masse (Q-TRAP) +/- RIF (72h) nmoles/g protéines nmoles/g protéines

L’activation de PXR provoque une augmentation de la lipogenèse de novo Michel Beylot INSERM ERI22 Mesure de la lipogenèse de novo : Quantification de l’incorporation de deutérium dans C16:0 par chromatographie en phase gazeuse et spectrométrie de masse +/- RIF (72h) Palmitate IE MPE 3% D2O (6h)

Ectopic overexpression of S14 increases lipogenesis in HepaRG cells De novo lipogenesis FG12 hS14 Palmitate IE MPE 27mM Glucose FG12 hS14 FG12 6mM Glucose FA quantifications

En conclusion: L’activation des xénorécepteurs induit une forte perturbation du métabolisme lipidique provoquant une accumulation des acides gras et des triglycérides hépatiques.

Role of CAR and PXR in interindividual variability in response to cancer therapy ? XS Narrow therapeutic index Toxicity Efficacy The clinical efficacy of anticancer therapy is severely limited by an inability to accurately predict outcome for the patient in terms of both tumor response and toxicity. The lack of prediction is of even greater clinical significance with these agents given their narrow therapeutic index. Drug metabolizing and transporters play a key role in the activation and inactivation of cytotoxics and can therefore influence the suceptibility of organs and tissues to their therapeutic or toxic effects. These genes are subject to significant inter-and intra-individual variability displaying both genetic polymorphism and inducibility. CAR and PXR regulate the expression of many important drug-metabolizing enzyme and transporters.

CAR and PXR regulate genes involved in biotransformation and clearance of widely used anticancer drugs CYP2A6 cyclophosphamide, ifosmamide, flutamine, tegafur CYP2B6 altretamine, cyclophosphamide, ifosmamide, tomoxifen CYP2C8 cyclophosphamide, docetaxel, ifosmamide, paclitaxel, tegafur, tretinoin CYP3A4/5 Bexarotene, busulfan, cisplatin, cyclophosphamide, cytarabine, dexamethasone, docetaxel, doxorubicin, erlotinib, etoposide, exemestane, flutamide,fulvestrant, gefitinib, ifosfamide, imatinib, irinotecan, letrozole, medroxyprogresterone acetate, mitoxantrone, paclitaxel, tamoxifen, targretin, teniposide, topotecan, toremifene, tretinoin, vinblastine, vincristine, vindesine, vinorelbine UGT doxorubicine, epirubicin, etoposide, irinotecan, topotecan, tamoxifen SULT tamoxifen GST busulfan, chlorambucil, cyclophosphamide, doxorubicin, ifosphamide, melphalan, nitrosurea MRP1 Arsenic trioxide, chlorambucil, daunorubicin, doxorubicin, epirubicin, etoposide, melphalan, methotrexate, mitoxantrone, paclitaxel, vinblastine, vincristine MRP2 Cisplatin, irinotecan doxorubicin, etoposide, methotrexate, SN-38, vinblastine, vincristine MRP3 Carboplatin, cisplatin, doxorubicin, epirubicin, etoposide, methotrexate, teniposide, vinblastine, vincristine BCRP Imatinib, methotrexate, mitoxantrone, SN-38, topotecan

Role of CAR and PXR in pharmacokinetic drug-drug interaction in oncology, some examples Rifampicin Phenytoin Decrease cyclophosphamide and increase 4-hydroxyclyclophosphamide plasma concentrations phenobarbital Severe toxicity Therapeutic escape and risk of relapse. As shown in this slide, several CAR and PXR activators affect the pharmacokinetics of concomitantly administrad chemotherapeutic agents, leading either to and enhancement of toxicity or inhibition of toxicity For instance, activators of CAR and PXR have been shown to decrease to level of the prodrug cyclophospamide (CYP2, CYP3) and increase the plasma concentration of its active metabolite (4-hydroxycyclophosphamide), potentially leading to severa systemic toxicity. In contrast CAR and PXR activators decrease plasma concentration of irinotecan and its active metabolite SN38. The clinical consequences of these observations are far reaching, as low systemic exposure to anticancer drugs, as a result of increased clearance, has an adverse effect on the efficacy of chemotherapy and has been associated with an increased risk of relapse. Rifampicin Phenobarbital Phenytoin Decrease CPT11 & SN38 and increase SN38-G plasma concentrations St John’s wort rifampicin Increases of erlotinib clearance and reduces the AUC by 66¨%

Role of CAR and PXR in cyclophosphamide activation phenytoin phenytoin Enzyme induction might also lead to toxicities, when the metabolizing enzymes are involved in the bioactivation of anticancer pro-drugs, such as the oxazaphosphorines cyclophosphamide and isofosfamide. These agents are subject to 4-hydroxylation by CYP2B6 and CYP3A4 leading to the formation of clinically active phosporamid moiety. Primary hepatocyte culture 1997 waxman In a recent case report, a patient with germ-cell cancer showed a significant strong decrease of cyclophosphamide and an increase of plasma level of its cytotoxic metabolite 4-OH cyclophosphamide in presence of phenytoin ( a CAR activator). the patient received phenytoin because of an epileptic seizure that developed 3 weeks after the first CTC course. Five days before the start of the second CTC course, the patient started with twice daily 150 mg phenytoin orally. The plasma exposure to cyclophosphamide decreased by 67% upon co-administration of phenytoin with concomitant increase in 4- hydroxycyclophosphamide AUC of 51%. The maximum concentration of 4- hydroxycyclophosphamide was 600% higher when phenytoin was co-administered. The cyclophosphamide dose was reduced from 2,835 mg day1 to 1,500 mg day De Jonge, Cancer Chemother Pharmacol. 2005 Chang, Yu, Maurel, Waxman. Cancer Res., 1997

Role of CAR and PXR on peripheral metabolism of irinotecan (Campto ®) May be the best characterized example of CAR and PXR mediated interaction Irinotecan is a camptothecin derivative that result in DNA damage on interaction with topoisomerase I. It is used in the treatment of metastatic carcinoma of the colon or rectum. It is a prodrug that undergoes hydrolysis by carboxyesterase I and 2 to form the pharmacologically active compound SN38. SN38 can then be inactivated through glucuronidation by UGTs.

CAR and PXR are expressed in several neoplastic human tissues Neuroblastoma (PXR) Misawa , Cancer Res, 2005 Endomedrial cancer cells (PXR) Masuyama, Mol. Pharm., 2007 Hepatocarcinoma (CAR, PXR) Huang , Mol Endocrinol, 2005 Pascussi Hepatology 2007 Intestinal & colon cancer cells (CAR, PXR) Jiang, J Gastrointest Surg, 2009 Raynal, Mol.Cancer, 2010 Ouyang, Br J Cancer, 2010 Breast tissues (PXR) Dotzlaw, 1999 Miki, Cancer Res, 2006 Lung cancer cells (PXR) Miki, Mol Cell Endocrinol, 2005 Ovarian cancer tissues (PXR) Gupta, Human Cnacer Biology , 2008 Osteosarcoma (PXR) Mensah-Osman, Cancer, 2007 Prostate cancer cells (PXR) Chen, Cancer res., 2008 While CAR and PXR expression in normal tissues seems to be restricted to the detoxication organs such as liver, GI and renal epithelia, it seems that these xenoreceptors are expression in

Expression of PXR in Human Breast Carcinoma LCM/RT-PCR (C) carcinoma cells (S) stromal cells PXR OATP-A PXR was detected in carcinoma tissues but not in nonneoplastic and stromal cells of breast tumors. A significant positive correlation was detected between the SXR/hPXR labeling index and both the histologic grade and the lymph node status of the carcinoma cases. Furthermore, in estrogen receptor–positive cases, hPXR expression was also positively correlated with expression of the cell proliferation marker, Ki-67. Microarray analysis showed that organic anion transporting polypeptide-A (OATP-A) was most closely correlated with SXR/hPXR gene expression, and both OATP-A mRNA and protein were significantly associated with SXR/hPXR in both breast carcinoma tissues and its cell lines. Miki et al, Cancer Res 2006; 66: (1). January 1, 2006

PXR expression in normal and cancerous human prostate tissues Immunohistochemical evaluation of PXR expression in normal and cancerous human prostate tissues. A, micrographies of representative tissue samples from normal prostate tissue and prostate adenocarcinomas. Brown or dark brown, PXR staining; blue, nucleus staining with hemotoxylin; arrows, strong immunoreactivities of PXR in the basal area of the normal gland (normal) and in the nuclei of cancer cells (cancer). panoramic micrographies of PXR immunoreactivities in normal prostate tissue or tissues with different degrees of malignancy. Brown or dark brown, PXR staining; blue, nucleus staining with hemotoxylin. Original magnifications: 40× (left) and 100× (right). Chen Y et al., Cancer Res 2007;67:10361-10367

Increased chemoresistance in PC-3 cells by PXR agonist, SR12813. CTRL 0.2 μM SR12813 1 μM SR12813 Increased chemoresistance in PC-3 cells by PXR agonist, SR12813. Cells were cultured in RPMI 1640 containing 5% FBS and treated with 0 μmol/L (DMSO, ○), 0.2 μmol/L (▪), or 1 μmol/L (▴) SR12813 for 12 h followed by the 72-h treatment of Taxol (A) or vinblastine (B). Chen Y et al., Cancer Res 2007;67:10361-10367

Increased chemosensitivity of PC-3 cells with PXR expression knocked down RT-PCR analysis of the mRNA level of PXR in wild-type or PXR non-knockdown PC-3 cells or PXR knockdown PC-3 cells. immunocytochemical staining of hPXR in wild-type or PXR non-knockdown PC-3 cells or PXR knockdown PC-3 cells. reduced promoter activities of PXR in PC-3 cells with PXR expression knocked down. sensitivity of wild-type and PXR knockdown PC-3 cells to vinblastine (0.3 μmol/L) or Taxol (0.1 μmol/L), treated with chemotherapeutics for 72 h and then the cell viability was measured by MTT Chen Y et al., Cancer Res 2007;67:10361-10367

Increased chemosensitivity of endothelial HEC-1cells with PXR expression knocked down Masuyama, Mol. Pharm., 2007

Increased chemoresistance in ovarian carcinoma cells by PXR agonist SKOV-3 D. Gupta et al. Human cancer Biology, 2008

Role of CAR and PXR in intra-tumoral metabolism of irinotecan ? Systemic drug clearance Cancer cells ?

PXR expression in normal and cancerous human colon tissues Raynal C. et al. Mol. Cancer Res 2010

PXR expression level restricts SN38 chemosensibility in colon cancer cells LS174T SW620

PXR expression level restricts SN38 chemosensibility in colon cancer cells

PXR expression level enhances SN38 glucuronidation in colon cancer cells Intracellular metabolites profiles (HPLC

PXR increases UGT1As-mediated SN38 inactivation in colon cancer cells (cytotoxic metabolite) PXR UGT1As SN38-G (inactive metabolite)

SN38 SN38-G CAR/PXR UGT1A1 SN38 SN38-G (cytotoxic metabolite) (inactive metabolite)

Role of CAR and PXR in intra-tumoral metabolism of cyclophosphamide ? Pro-drug activation Cancer cells ?

PXR regulates ALDH1A1 gene expression and Aldefluor® activity

CAR and PXR may increase cancer cell resistance to 4-OH-CPA while promoting severe toxicity Hepatic cells Cancer cells

chemotherapy-resistance and poor clinical outcome Aldefluor®-positive cells are associated with cancer initiation properties, chemotherapy-resistance and poor clinical outcome

Aldehyde Dehydrogenase 1 is a marker for normal and malignant human colonic stem cells and have tumor initiating properties CD44 ALDH1 Nuclei

Aldefluor®-positive Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy

8181 Aldefluor®-positive cells display higher expression of PXR and PXR target genes PXR ALDH1A1 ABCG2 CYP3A4 OCT4 LGR5 CD26 BMI1 NANOG PXR

Aldefluor®-positive cells display enhanced clonogenic, sphere forming activity and magnétorésistance * Nb sphere / 100 cells ALDHlow ALDHbr Soft-agar (1000 cells) – 3 weeks

PXR knock-down decreases chemoresistance of Aldefluor®-positive cells siRNA (sibGAL / siPXR) 100nM Cell viability (ATP content)

PXR knock-down decreases xenogeneic tumor recurrence Tumor formation Treatment response Relapse Folfiri: 50mg/kg 5-FU 30mg/kg irinotecan ONCO TALK - 29/01/2013

PXR knock-down decreases Aldefluor®-positive cells enrichment and tumor initiating activity after cytotoxics treatment 15.000 cells 3D FOLFIRI Tumor cells dissociation reinjection 1500 cells

CSCs are believed to be spared from most anticancer therapies, such as chemotherapy. Inhibitors of survival pathways, along with differentiation-inducing agents, immune cells, and cytotoxic chemotherapeutics, might be used to destroy CSCs and induce complete tumor regression 8686 PXR inhibition as a new strategy for Chemoresistant and Tumor Initiating Cells (CTIC) re-sensitization to conventional therapies ? Conventional therapy PXR inhibition & conventional therapy

Les xénorécepteurs CAR et PXR Gènes Cibles Enzymes et transpoteurs majeurs de la fonction de détoxication entérohépatique OATP2 CYP3A4,5,7 CYP2B6 CYP2C8,9 CYP1A2 UGT1A1,6,9 GSTs SULT2A1 MDR1 MRP2-4

Interactions croisées avec d’autres voies cellulaires Perturbations endocriniennes - Vitamine D Perturbations métaboliques - Lipides CAR/PXR - Hépatite fulminante - HCC Adduit Transporteurs Métabolites CYP450 Transférases Xénobiotique inactif Molécule thérapeutique actif Interactions médicamenteuses

Conclusion Cells and organisms are able to increase and adapt their capacity of detoxication in response to some xenobiotics and drugs Nuclear receptors PXR and CAR play a major part in this process by controlling a network of signaling pathways that regulate the expression of specific batteries of genes involved in the detoxication machinery Because 1) many endocrine hormones are metabolised by CAR and PXR target genes, and 2) they interfere with other signalling pathways, chronic activation of these NRs (drugs, industrial or natural contaminants) could alter endocrine physiology and disease promotion. According to their role as masters xenobiotic responsive receptors linking DME genes expression to environment stimuli, CAR and PXR might contribute to the well-known intra- and inter-subject variability in anticancer drugs response. Environmental and genetic factors affecting CAR or PXR (expression or activation levels) may affect the cytotoxic threshold of tumor cells to chemotherapy which can consequently mask or attenuate pharmacogenetic associations.