Équation de Schrödinger Effet TUNNEL

Slides:



Advertisements
Présentations similaires
CHAPITRE II – LE COURANT ELECTRIQUE DANS LES METAUX
Advertisements

ENERGIE et PUISSANCE.
VI) Évolution temporelle des systèmes quantiques.
III) Comportement ondulatoire des corpuscules
Classification Périodique
Grain donde ou les deux visages de la lumière. Introduction.
MAT 2998J.M. Lina PREAMBULE: LEQUATION DE SHR Ö DINGER Description probabiliste de la Nature microscopique: les constituants sont décrits par une fonction.
INTRODUCTION Prof. Ambroise DIBY
1-2 STRUCTURE DE LA MATIÈRE
INTRODUCTION A LA SPECTROSCOPIE
Électricité et magnétisme (203-NYB) Chapitre 4: Le potentiel électrique Le champ électrique donne la force agissant sur une unité de charge en un point.
Electricité 1er partie : Electrostatique I- La charge
CHAPITRE 4 LE POTENTIEL ÉLECTRIQUE.
1 INTRODUCTION.
Le microscope à effet tunnel (STM) Appliqué aux métaux
Physique quantique.
Électricité et magnétisme (203-NYB) Chapitre 2: Le champ électrique
Dualité onde-corpuscule et principe d’incertitude
Propriétés des matériaux semi-conducteurs
La Modélisation Moléculaire
Électricité et magnétisme (203-NYB) Chapitre 4: Le potentiel électrique Le champ électrique donne la force agissant sur une unité de charge en un point.
IV. Dynamique des électrons de Bloch
Chapitre 10 : La mécanique ondulatoire
Ensemble de règles pour énumérer les états
Chapitre 9: Les débuts de la théorie quantique
COMPRENDRE : Lois et modèles
Solide conducteur électrique.
Le courant électrique 1 - Le courant électrique
Histoire de mécanique quantique
Couleurs et images.
Contrôles et caractérisations des surfaces
Chapitre VII Travail et Energie.
COMPRENDRE : Lois et modèles
L’expérience de Rutherford
De l’atome à l’élément chimique
Chapitre 10: La mécanique ondulatoire
UHA-FST Année L1S1-2 Examen de janvier 2007 – Durée 90 minutes Introduction aux concepts de la Physique N° carte étudiant:………………… 1-Donner la propriété.
Le modèle basé sur la mécanique ondulatoire
Révision – Évaluation sommative
Forces centrales et mouvement des planètes:
Présentation de l’équation de Schrödinger
Electrostatique- Chap.2 CHAPITRE 2 CHAMP ELECTROSTATIQUE Objectif :
B. L’évolution historique du modèle de mécanique quantique
Les atomes et leur composition
On ne soupçonne pas dans quoi on met les pieds….
LES DÉBUTS DE L’ELECTRON EN PHYSIQUE
Chapitre 4 – structure de l’atome un modèle pour l’atome
Rappels historiques et théoriques
Partie B ELECTROCINETIQUE OBJECTIFS:
3. Principes de base de la mécanique quantique
Qu'est ce qu'un atome ? Un atome est constitué d'un noyau autour duquel tournent un ou plusieurs électrons.
PHYSIQUE QUANTIQUE Ph .DUROUCHOUX.
Informatique Quantique
L'atome quantique préambule.
Electrostatique- Chap.1
La mécanique de Newton et l’atome
CHAPITRE I LE MODELE QUANTIQUE DE L'ATOME.
Électricité et magnétisme (203-NYB) Chapitre 2: Le champ électrique
1 – Continuité et comportement de la fonction d’onde
Physique quantique Interférences avec des électrons.
Électricité et magnétisme (203-NYB) Chapitre 4: Le potentiel électrique Le champ électrique donne la force agissant sur une unité de charge en un point.
Équation de Schrödinger
Chap 2 : Conduction électrique des métaux
L'atome quantique préambule.
III. Dualité onde corpuscule
Ph Durouchoux : Introduction au Cours de Physique Quantique
Chapitre 2 : Le modèle de l’atome Les objectifs de connaissance :
Caractéristiques des ondes
CHAPITRE III LE MODELE QUANTIQUE DE L'ATOME.
L'atome quantique préambule.
Transcription de la présentation:

Équation de Schrödinger Effet TUNNEL Ph. DUROUCHOUX

INTRODUCTION Biographie de Erwin Schrödinger Définition de la mécanique Quantique Interprétation de l’équation de Schrödinger Intégration et applications à différentes distributions de potentiel

Biographie de Erwin Schrödinger Né à Vienne en 1887, mort en 1961. 1920 : Nommé professeur à la Haute Ecole technique de Stuttgart puis à l'université de Breslau l'année suivante. 1927 : il succède à Max Planck à l'université de Berlin. Israélite, il quitte le pays à l'avènement du national-socialisme pour se rendre à Oxford. 1940 : Devient professeur de physique théorique à Dublin à l'Institut des hautes études de l'Etat libre d'Irlande.

Schrödinger travaille sur l'étude des couleurs, mais il est plus reconnu pour ses recherches en mécanique ondulatoire et succèdera au français Louis de Broglie dans ce domaine. L'équation de Schrödinger, élaborée en 1926, permet de calculer la fonction d'onde d'une particule se déplaçant dans un champ, elle constitue la base de la mécanique quantique. En 1933, Schrödinger partage le prix Nobel de physique avec le Britannique Paul Dirac pour leur contribution au développement de cette nouvelle discipline.

Définition de la mécanique quantique La mécanique quantique décrit le comportement des particules microscopiques (électrons, protons, neutrons, ou des systèmes plus complexes tels qu'atomes et molécules) dans un cadre non-relativiste et dans le cas où les particules sont conservées. Plus largement, on parle de physique quantique. La physique quantique cherche donc à comprendre les particules qui nous composent.

Interprétation de l’équation de Schrödinger - EN=>E1, E2 ,…, EN : Énergies de liaison de l’électron de l’atome d’Hydrogène, il peut y avoir plusieurs énergies possibles qui sont quantifiées. - Ψ => Fonction d’onde et |Ψ1|2 est la probabilité de trouver E1. D’où la condition de normalisation : A chaque fois que l’on mesure une énergie il faut tenir compte de la probabilité de trouver l’électron de l’atome d’Hydrogène. En effet, l'électron de l'atome d'hydrogène est en mouvement incessant autour du noyau chargé positivement. La probabilité de présence ne dépend donc que de la distance r de l'électron au noyau. Elle s’annule que lorsque la distance au noyau tend vers l'infini. - |ΨN)=> est la notation de Dirac pour un vecteur. - H=> Hamiltonien, c’est une fonction qui représente l’énergie totale du système.

Distribution de potentiels Axe des énergies V=0 Des électrons sont repoussés E0 E0<V0 :Milieu Semi conducteur Atténuation, état lié (ondes évanescentes) x -a +a V0 E0>V : Etat libre Propagation des électrons (milieu Conducteur) I II III Un petit nombre d’électrons passe la barrière Sorte de Tunnel V : Énergie potentielle E0 : Énergie Cinétique de l’électron

L’effet Tunnel Imaginez une balle que vous lanciez contre un mur. Soit elle est lancée assez fort, et elle passe au dessus du mur, soit elle n'est pas lancée assez fort, et elle rebondit. C’est le même phénomène qui se passe pour un électron essayant de sortir du métal qui le contient. Si on le lance assez fort, il franchit la barrière et retombe de l'autre côté (autrement dit, si on lui impose un champ électrique assez fort, il est capable de sortir du métal pour traverser le vide jusqu'à un autre métal ou matériau conducteur). Toutefois une différence intervient : c'est si vous ne lancez pas assez fort votre électron. A la différence d'une balle, un ensemble d’électrons est une sorte de nuage. Un blob. Une partie de ce blob peut passer le mur tandis que l'autre va rebondir. C'est la différence avec la balle. Confronté à une barrière, un nuage d’électrons a donc la possibilité de se scinder en deux : une partie franchit la barrière, et l'autre non. Si on lance des électrons contre une barrière, plus la barrière est petite, plus les électrons ont de chance de passer, par effet tunnel.

Application de l’effet tunnel En fait, si nous ne connaissons pas la hauteur de la barrière, on peut la calculer, si nous savons la proportion des électrons qui la franchissent. C'est le principe du microscope à effet tunnel. Une pointe métallique est placée au dessus de l'objet à étudier. Et on balade la pointe : plus l'écart entre la pointe et l'objet est grand, moins les électrons contenus dans la pointe arrivent à passer. On arrive ainsi en baladant la pointe, à créer une image 3D de l'objet qu'on étudie !

Atome d’or vu au microscope à effet tunnel En mécanique quantique, il existe des électrons hors du solide avec une énergie faible : c'est l'effet tunnel. On balaye la surface de l'échantillon avec une pointe monoatomique, ce qui permet l'application de l'effet tunnel. Il suffit alors de mesurer l'intensité entre la pointe et l'échantillon en fonction des coordonnées (x,y).

Il existe plusieurs types de barrières L’effet tunnel : c’est donc le fait d’avoir des électrons qui passent une barrière de potentiel alors qu’ils n’ont pas selon la physique classique l’énergie nécessaire. Il existe plusieurs types de barrières Barrière de Potentiel Puits de Potentiel Rampe de Potentiel Puits infini de potentiel Barrière infinie de Potentiel

Principe de l’effet tunnel Plus l’énergie cinétique augmente plus les électrons peuvent passer. Si Ec=Ep => Tous les électrons ne passent pas, ils repartent donc dans l’autre sens Si Ec>Ep => Plus d’électrons passent mais toujours pas tous.

Équation de Propagation Domaine I E0>V : Be-ikx correspond aux électrons qui reviennent au départ. Nous sommes ici dans un état libre. A et B sont appelés constantes d’intégration. Domaine II E0<V : Etat lié. Domaine III : F=0 pas de retour des électrons, état libre.

Autre exemple de barrière de potentiel V=0 E0 II Rampe de Potentiel b c V=αx V=V0 I III IV x V

Les équations des fonctions d’onde selon le milieu sont : Pour le milieu I : ΨI= Aeik1x + Be-ik1x avec k1 = f(E0), k le nombre d’onde Pour le milieu II : ΨII= Ceik2x + De-ik2x avec k2 = f(E0, Vvariant) Pour le milieu III : ΨIII= Eek3x + Fe-k3x avec k3 = f(E0, Vvariant) Pour le milieu IV : ΨIV= Gek4x + He-k4x , x→ ∞, G=0 car e+∞ est impossible.

SOURCES http://romain.bel.free.fr/agregation/Lecons/LP61.doc http://www.infoscience.fr/histoire/biograph/biograph.php3?Ref=57 http://fr.wikipedia.org/wiki/%C3%89quation_de_Schr%C3%B6dinger http://www.e-scio.net/mecaq/imaginer.php3