1 Pratiques des sciences sociales Le monde des nombres Séance 2 : La mesure / concepts et indicateurs Bruno Cautrès, Chercheur au CEVIPOF Louis Chauvel, Professeur des Universités à Sciences Po Site du cours :
2 l Plan de cette séance : lUne épistémologie du travail des sciences sociales lLe passage concepts => indicateurs lLes différents types de variables lL’exemple de l’obésité : utilité et limites des indicateurs
3 La mesure / concepts et indicateurs : ce que mesurer en sciences sociales veut dire
4 UNE épistémologie du quantitativisme en sciences sociales
5 Le quadrilatère méthodologique
6 Des concepts abstraits aux indicateurs Tout concept est abstrait, il provient d ’une théorie. Il demande à être traduit en indicateurs. La plupart des concepts sont non-observables et mesurables directement Pour que cette traduction puisse se faire sans trop d’arbitraire, c’est-à-dire en établissant une certaine validité et fidélité des indicateurs, il est indispensable que l’on ait au moins une définition provisoire des concepts utilisés. Cette définition aide également à choisir un « design » expérimental ou d’observation adéquat.
7 Comment faire ? On appelle « opérationnalisation » le processus de passage des concepts aux indicateurs. On va tout d ’abord décomposer le concept en dimensions. Puis on se donne des indicateurs pour chacune des dimensions Enfin, selon le protocole d ’observation choisi, on construit des outils de mesure des indicateurs : questions ouvertes ou fermées, consignes semi-directives pour des entretiens, etc…
8 Exemple Concept Une de ses dimensions Un des indicateurs de cette dimension Outil = questions fermées Traditionalisme Rapport aux valeurs morales Permissivité sexuelle « D ’une manière générale, pensez-vous que l ’homosexualité est quelque chose de tout à fait… pas du tout condamnable »
9 Les différents types de variables Stevens distingue trois grands types de niveaux de mesure qui définissent différents types de variables variables nominales variables ordinales variables d’intervalles Du plus bas au plus haut niveau de mesure
10 Variables nominales (« qualitatives », catégoriques, catégorielles) Niveau le moins « riche » en terme de mesure « Nominales»? : étiquettes, dénominations, catégorisations Exhaustivité et exclusivité mutuelle des catégories Codages numériques des catégories sans significations Pas de hiérarchisation entre catégories Exemples Appartenance religieuse : Catholiques, Protestants, Musulmans, Juifs, Bouddhistes, Autres. Nationalité : Français, Allemands, Russes, Italiens, Portugais, etc... Catégories socioprofessionnelles : Agriculteurs, Ouvriers, Cadres, Patrons, etc...
11 Variables ordinales « Ordinale »? : introduit l ’ordre entre les éléments comme information signifiante Les nombres assignés aux catégories supportent toute transformation qui laisse l ’ordre invariant. Les catégories sont rangées le long d ’un même continuum Pas de calcul des distances Exemples Statut socio-économique : upper-class, upper-middle class, lower-middle class, lower class Echelle de satisfaction : Très satisfait, plutôt satisfait, satisfait, plutôt pas satisfait, pas satisfait du tout
12 Variables d ’intervalles (quantitatives, métriques, numériques) Niveau le plus « riche » en terme de mesure : mesurer c ’est affecter des valeurs numériques « Intervalle »? : ajoute à la relation d ’ordre la signification des distances. Variables sur lesquelles on peut effectuer des transformations par calcul Selon les cas, l ’unité de mesure est donnée ou construite de manière ad- hoc Exemples La température : degrés Celsius, Fahrenheit L ’âge : en années, en mois, en jours Le poids : en grammes, en kilos, en livres Particularités des sciences sociales ?
13 Quelques cas particuliers Variables de rapports « Echelle d ’intervalles avec une origine rationnelle » (Stevens 1951). Un point 0 « absolu » ou non-arbitraire pour une variable d ’intervalles On peut comparer les scores en calculant leurs ratios Exemples : nombre de coups d’Etat dans des pays (le 0 veut dire quelque chose) Variables dichotomiques (binaires, indicatrices) Simple contraste entre deux catégories Servent souvent à mesurer des qualités comme présence/absence, avoir/ne pas avoir, être/ne pas être Exemples : membre/non membre; possède/ne possède pas; est de gauche/n ’est pas de gauche
14 Conséquences des types de variables sur les analyses statistiques Selon les types de variables certains calculs statistiques seront possibles et pertinents ou pas. Avec des variables nominales on pourra décompter les fréquences et calculer des %. Avec des variables ordinales on pourra, en plus, interpréter les % cumulés Avec des variables d’intervalles on pourra faire encore plus : calculer des moyennes, écarts-types, variances, etc…
15 L’obésité, enjeu de société Anorexie Obésité Nombre d’articles dans la presse contenant les mots : Anorexie et obésité dans Le MondeObésité dans Le Monde et le NYT NYT Le Monde Source de données : Europresse et Lexis-Nexis Epidémie d’obésité ou de peur médiatisée ???
16 Corpulence et obésité : différences France / US Hypothèse : l’obésité se développe Question : comment définir l’obésité et la mesurer ? Définir un « excès de poids », en relation avec la taille des individus => une « corpulence » trop élevée Indice de Masse Corporelle = (poids / taille 2 ) (nb : poids en kg, 65 kg, taille en m, 1,65 m => IMC = 23,9) lMaigres : IMC < 18,5 lPoids normaux : 18,5<IMC<25 lEn surpoids : 25 pour 1,65 m : 68 kg… lObèses : IMC> > pour 1,65 m : 82 kg…
17 Corpulence et obésité : différences France / US FranceEtats-Unis Hommes6,9%10,5%12,4%26,8% Femmes7%9,7%18%37,5% Total7%10%16%32,5% Taux d’obésité France-US Sources : REGNIER Faustine, « Obésité, corpulence et statut social », INRA sciences sociales, 20e année, n°1, Juin Enquête Santé et soins médicaux, INSEE, 1970 (n=14842) -Enquête permanente sur les conditions de vie des ménages, INSEE, 2001 (n=5113) -National Health and Nutrition Examination Survey, NCHS, 1970 (n=23808) -National Health and Nutrition Examination Survey, NCHS, 2000 (n=9965)
18 Obésité, enjeu social lC’est vrai que cela se développe lMalgré tout, si le problème est assez pesant aux Etats-Unis, en France, « il y a de la marge » lLes médias en France et l’« air du temps » semblent plus proches des variations étasuniennes que françaises => Phénomène de sur-ajustement ? => Petit problème : l’obésité telle que mesurée ici correspond-elle TOUJOURS à l’idée que nous en avons généralement ?
19 Name: Arnold Alois Schwarzenegger Born: July 30, 1947, Thal, Austria. Location: Los Angeles, CA, USA Off Season Weight: Around 260 lbs | Competition Weight: Around 235 lbs Height: 6'2" | Arms: 22" | Chest: 57" | Waist: 34" | Thighs: 28.5" | Calves: 20" IMC “hors saison” = 33.4 IMC “saison de compétition” = 30.2 Le Gouverneur Schwarzenegger (lorsqu‘il était bodybuilder) était obèse CQFD Problème : gras, muscle, matière grise ?
20 Bon appétit ! Still Life With Watermelon Fernando Botero