PARAMETRES STATISTIQUES
PARAMETRES STATISTIQUES Les représentations graphiques ont permis une première synthèse visuelle de la distribution des observations Un paramètre statistique permet de résumer par une seule quantité numérique une information contenue dans une distribution d’observations. Les paramètres statistiques ne concernent que les variables quantitatives N° individu Variable Tendance centrale N° individu Variable Position 100 % - A % A % N° individu Variable Dispersion
PARAMETRES STATISTIQUES (1) PARAMETRES DE TENDANCE CENTRALE LE MODE Tendance centrale Tendance centrale Position Dispersion Une distribution est unimodale si elle présente un maximum marqué, et pas d'autres maxima relatifs. La lecture s’effectue sur le diagramme en bâtons ou l'histogramme. Mode Classe modale Mode Le mode correspond à l'abscisse du maximum, c.à.d. la valeur la plus fréquente
(2) PARAMETRES DE TENDANCE CENTRALE LE MODE PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (2) PARAMETRES DE TENDANCE CENTRALE LE MODE Si la distribution présente 2 ou plus maxima relatifs, on dit qu'elle est bimodale ou plurimodale. La population est composée de plusieurs sous-populations ayant des caractéristiques de tendance centrale différentes. 20 40 60 80 100 120 140 1 2 3 4 5 6 Mode 1 Mode 2 Mode 1 Mode 2
(3) PARAMETRES DE TENDANCE CENTRALE LA MEDIANE PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (3) PARAMETRES DE TENDANCE CENTRALE LA MEDIANE Les valeurs observées doivent être rangées par ordre croissant. La médiane M est la valeur du milieu de la série d’observations, c.à.d. telle qu'il y ait autant d'observations "au-dessous" que "au-dessus". Nombre impair d’observations Nombre pair d’observations M Intervalle médian M = milieu = 5,5 4 valeurs 4 valeurs
PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (4) PARAMETRES DE TENDANCE CENTRALE LA MEDIANE à partir d’une distribution discrète F(x) 0,606 0,286 0,994 0,967 1 0,869 F(x) 0,500 0,286 0,889 0,861 1 0,764 M 0,5 Intervalle médian M = milieu = 1,5 0,5 0,5 1 -2 -1 2 3 4 5 6 0,5 1 -2 -1 2 3 4 5 6 M Intervalle médian M = milieu = 1,5
PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (5) PARAMETRES DE TENDANCE CENTRALE LA MEDIANE à partir d’une distribution continue 3 5 10 20 30 50 x 0,391 0,680 0,920 0,963 0,993 1 F(x) 0,5-0,391 M - 3 5 - 3 0,680-0,391 M 0,5 0,5 3,22 M
(6) PARAMETRES DE TENDANCE CENTRALE LA MOYENNE ARITHMETIQUE PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (6) PARAMETRES DE TENDANCE CENTRALE LA MOYENNE ARITHMETIQUE La moyenne arithmétique est notée Série brute x1, x2, … , xn Série groupée
(7) PARAMETRES DE TENDANCE CENTRALE LA MOYENNE ARITHMETIQUE PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (7) PARAMETRES DE TENDANCE CENTRALE LA MOYENNE ARITHMETIQUE Série classée
(8) PARAMETRES DE TENDANCE CENTRALE LA MOYENNE ARITHMETIQUE PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (8) PARAMETRES DE TENDANCE CENTRALE LA MOYENNE ARITHMETIQUE Comment faire la moyenne de plusieurs populations ? Population P2 Effectif n2 Moyenne Population P1 Effectif n1 Moyenne Population Effectif n = n1+ n2 Moyenne Moyenne globale = moyenne des moyennes
(9) PARAMETRES DE TENDANCE CENTRALE PROPRIETES GENERALES PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (9) PARAMETRES DE TENDANCE CENTRALE PROPRIETES GENERALES z = a x + b P (z) = a P (x) + b y = a x x P (x) = moyenne, médiane, mode P (y) = a P (x)
PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (10) PARAMETRES DE TENDANCE CENTRALE MOYENNES GEOMETRIQUE ET HARMONIQUE Moyenne géométrique Utilisée dans le cas de phénomènes multiplicatifs (taux de croissance moyen) Moyenne harmonique Utilisée dans le cas où l’on combine 2 variables sous forme de rapport (pièces/heure, km/litre,…)
PARAMETRES STATISTIQUES (1) PARAMETRES DE POSITION LES FRACTILES OU QUANTILES Position Tendance centrale Position Dispersion On appelle fractiles ou quantiles d'ordre k les (k-1) valeurs qui divisent les observations en k parties d'effectifs égaux. 1 médiane M qui divise les observations en 2 parties égales 3 quartiles Q1, Q2, Q3 qui divisent les observations en 4 parties égales 9 déciles D1, D2, …, D9 qui divisent les observations en 10 parties égales 99 centiles C1, C2, …, C99 qui divisent les observations en 100 parties égales
(2) PARAMETRES DE POSITION LES FRACTILES OU QUANTILES PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (2) PARAMETRES DE POSITION LES FRACTILES OU QUANTILES Quartiles, déciles, centiles s’obtiennent de la même façon que la médiane. 1 -2 -1 2 3 4 5 6 Variable discrète Variable continue 0,9 D9 Q3 0,75 0,75 Q3 0,5 M 0,5 M 0,2 D2
(3) PARAMETRES DE POSITION PROPRIETES GENERALES PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (3) PARAMETRES DE POSITION PROPRIETES GENERALES z = a x + b Q (z) = a Q (x) + b A % 100 % - A % y = a x Q (y) = a Q (x) A % 100 % - A % x Q (x) = quantile A % 100 % - A %
PARAMETRES STATISTIQUES Dispersion (1) PARAMETRES DE DISPERSION Tendance centrale Position Dispersion Etendue : R = xmax - xmin Intervalle interquartile : IQ = Q3 - Q1 Variance : Série brute : Série groupée ou classée : = Moyenne des carrés - Carré de la moyenne Ecart-type :
(2) PARAMETRES DE DISPERSION PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (2) PARAMETRES DE DISPERSION Comment faire la variance de plusieurs populations ? Population P2 Effectif n2 Moyenne Variance V2 Population P1 Effectif n1 Moyenne Variance V1 Population Effectif n = n1+ n2 Moyenne Variance V ? Variance globale = Moyenne des variances + Variance des moyennes
(3) PARAMETRES DE DISPERSION PROPRIETES GENERALES PARAMETRES STATISTIQUES Tendance centrale Position Dispersion (3) PARAMETRES DE DISPERSION PROPRIETES GENERALES z = a x + b P (z) = a P (x) y = a x P (y) = a P (x) x P (x) = étendue, écart-type, intervalle interquartile
PROPRIETES IMPORTANTES DE LA MOYENNE ET DE LA VARIANCE PARAMETRES STATISTIQUES PROPRIETES IMPORTANTES DE LA MOYENNE ET DE LA VARIANCE Comment se comportent la moyenne et la variance lorsqu’on fait subir un changement de variable aux observations? xi yi = a xi + b Comment se comportent la moyenne et la variance de la somme de deux séries d’observations? xi yi zi = xi + yi