La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Présenté par: DJELLAT Soulimane M er DJELLAT Soulimane Examiné par: M er BENYATTOU Mohammed Master 2 RFIA 2012- 2013 Module: Optimisation Avancé

Présentations similaires


Présentation au sujet: "Présenté par: DJELLAT Soulimane M er DJELLAT Soulimane Examiné par: M er BENYATTOU Mohammed Master 2 RFIA 2012- 2013 Module: Optimisation Avancé"— Transcription de la présentation:

1 Présenté par: DJELLAT Soulimane M er DJELLAT Soulimane Examiné par: M er BENYATTOU Mohammed Master 2 RFIA Module: Optimisation Avancé

2 L intro En observant une colonie de fourmis à la recherche de nourriture dans les environs du nid, on saperçoit quelle résoud des problèmes tels que celui de la recherche du plus court chemin. Les fourmis résolvent des problèmes complexes par des mécanismes assez simples a modéliser. Il est ainsi assez simple de simuler leur comportement par des algorithmes. Hist 1983 travaux de Deneubourg sur les fourmis. Cette méta-heuristique a été introduite en 1991 par Colorni, Dorigo et Maniezzo pour résoudre le problème du Voyageur de commerce. Elle sest popularisée, puis a été lobjet daméliorations dès 1995 et a été appliquée avec succès à dautres problèmes doptimisation combinatoire dès

3 Les algorithmes de colonies de fourmis sont des algorithmes inspirés du comportement des fourmis et qui constituent une famille de méta heuristiques doptimisation. Un modèle expliquant ce comportement est le suivant : une fourmi Parcourt plus ou moins au hasard lenvironnement autour de la colonie. si celle-ci découvre une source de nourriture, elle rentre plus ou moins directement au nid, en laissant sur son chemin une piste de phéromones. ces phéromones étant attractives, les fourmis passant à proximité vont avoir tendance à suivre, de façon plus ou moins directe, cette piste. en revenant au nid, ces mêmes fourmis vont renforcer la piste. si deux pistes sont possibles pour atteindre la même source de nourriture, celle étant la plus courte sera, dans le même temps, parcourue par plus de fourmis que la longue piste. la piste courte sera donc de plus en plus renforcée, et donc de plus en plus attractive. à terme, lensemble des fourmis a donc déterminé et « choisi » la piste la plus courte.

4 stigmergie Les fourmis utilisent lenvironnement comme support de communication : elles échangent indirectement de linformation en déposant des phéromones, le tout décrivant létat de leur « travail ». Linformation échangée a une portée locale, seule une fourmi située à lendroit où les phéromones ont été déposées y a accès. Ce système porte le nom de « stigmergie », et se retrouve chez plusieurs animaux sociaux (il a notamment été étudié dans le cas de la construction de piliers dans les nids de termites). Différences comparatives entre les fourmis artificielles et les vraies

5 ce premier algorithme de colonies de fourmis (Ant system (système fourmi)). Il vise notamment à résoudre le problème du voyageur de commerce. Le voyageur de commerce est un problème NP-complet. La métaphore de la colonisation de fourmis sy applique particulièrement bien. Lalgorithme général est relativement simple, et repose sur un ensemble de fourmis, chacune parcourant un trajet parmi ceux possibles. À chaque étape, la fourmi choisit de passer dune ville à une autre en fonction de quelques règles : elle ne peut visiter quune fois chaque ville ; plus une ville est loin, moins elle a de chance dêtre choisie (cest la « visibilité ») ; plus l'intensité de la piste de phéromone disposée sur larête entre deux villes est grande, plus le trajet aura de chance dêtre choisi ; une fois son trajet terminé, la fourmi dépose, sur lensemble des arêtes parcourues, plus de phéromones si le trajet est court ; les pistes de phéromones sévaporent à chaque itération

6 Algorithme de colonies de fourmis pour le problème du voyageur de commerce TSP: Tant que le critère d'arrêt n'est pas atteint faire Pour k=1 à m faire Choisir une ville au hasard Pour chaque ville non visitée i faire Choisir une ville j, dans la liste des villes restantes selon (F-1) Fin Pour Déposer une piste sur le trajet (t) conformément à (F-2) Fin Pour Évaporer les pistes selon (F-3) Fin Tant que Le but initial de cette méthode était de résoudre le problème du voyageur de commerce. Si l'on considère un problème de voyageur de commerce à N villes, chaque fourmi k parcourt le graphe et construit un trajet de longueur n =/N/. Pour chaque fourmi, le trajet d'une ville i à une ville j dépend de :

7 la liste des villes déjà visitées, qui définit les mouvements possibles à chaque pas, quand la fourmi k est sur la ville i, l'inverse de la distance entre les villes, appelée visibilité. Cette information est utilisée pour diriger les fourmis vers des villes proches et ainsi, éviter de trop longs déplacements. la quantité de phéromone déposée sur l'arête reliant deux villes appelée intensité de la piste. Cette quantité définit l'attractivité d'une piste et est modifiée après le passage d'une fourmi. C'est la pseudo-mémoire du système La règle de déplacement est la suivante : = α et β sont deux paramètres qui contrôlent limportance relative entre phéromones et visibilité. Après un tour complet, chaque fourmi dépose une quantité de phéromone (t) sur l'ensemble de son parcours. Cette quantité dépend de la qualité de la solution trouvée et est définie par :

8

9 Exemple Détaillé Si on place à chaque instant t : 30 fourmis en B qui sont venus de A, 30 fourmis en D qui sont venus de E, la vitesse =1, lintensité de phéromone=1, le phéromone sévapore instamment au milieu de lintervalle (t+1,t+2)

10 Domaines dapplication : Applications au problème symétrique et asymétrique de voyageur de commerce. Applications au problème dordonnancement séquentiel. Applications aux problèmes daffectation quadratique. Applications aux problèmes de tournées des véhicules. Applications aux problèmes d'établissement dhoraires. Applications aux problèmes de coloration de graphe. Applications aux problèmes de partitionnement. Applications aux réseaux de télécommunications. Implémentations parallèles. Inconvenants et Avantages : Avantage: Très grande adaptabilité. Parfait pour les problèmes basés sur des graphes. Inconvénients: Un état bloquant peut arriver. Temps d'exécution parfois long. Ne s'applique pas à tous type de problèmes.

11 Lalgorithme des colonies des fourmis est une heuristique, avec caractère général utilisée pour résoudre différentes problèmes danalyse combinatoire. Principal inconvénient : coût relativement élevé de la génération des solutions. Elle commence à être adaptée à des problèmes continus Bibliographie : 1.fr.wikipedia.org 2.Optimisation par colonies de fourmis. COSTANZO Andrea. LUONG Thé Van. MARILL Guillaume http://khayyam.developpez.com/articles/algo/voyageur-de- commerce/colonies-de-fourmis/http://khayyam.developpez.com/articles/algo/voyageur-de- commerce/colonies-de-fourmis/

12


Télécharger ppt "Présenté par: DJELLAT Soulimane M er DJELLAT Soulimane Examiné par: M er BENYATTOU Mohammed Master 2 RFIA 2012- 2013 Module: Optimisation Avancé"

Présentations similaires


Annonces Google