La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Nov 2008Stats bayésiennes - Ph. Aegerter 1 Statistiques Bayésiennes Intérêt croissant : –Aide décision : contexte = diagnostic –puis RC : contexte = estimation,

Présentations similaires


Présentation au sujet: "Nov 2008Stats bayésiennes - Ph. Aegerter 1 Statistiques Bayésiennes Intérêt croissant : –Aide décision : contexte = diagnostic –puis RC : contexte = estimation,"— Transcription de la présentation:

1 Nov 2008Stats bayésiennes - Ph. Aegerter 1 Statistiques Bayésiennes Intérêt croissant : –Aide décision : contexte = diagnostic –puis RC : contexte = estimation, test, modèles Publications récentes –Ashby D. Bayesian statistics in medicine: a 25 year review.Stat Med Nov 15;25(21): Review. –Meyer N, Vinzio S, Goichot B. La statistique bayésienne : une approche des statistiques adaptée à la clinique. Rev Med Interne août. –a primer on Bayesian Statistics in Health Economics and Outcomes Research. OHagan A, Luce BR.

2 Nov 2008Stats bayésiennes - Ph. Aegerter 2 Théorème de Bayes Théorème de linversion des probabilités p(A/B) = p(AetB) / p(B) p(B/A) = p(AetB) / p(A) -> p(B/A) = p(A/B). p(B) / p(A) p(A) = p(A/B).p(B) + p(A/B-).p(B-)

3 Nov 2008Stats bayésiennes - Ph. Aegerter 3 Diag : Matrice de décision Cas idéalCas réel

4 Nov 2008Stats bayésiennes - Ph. Aegerter 4 Sensibilité Sensibilité = VP / (VP + FN) = VP / M+ = aptitude à détecter tous les cas M+ estime p(S+/M+) limite: Se = 1 signe constant fièvre dans typhoïde

5 Nov 2008Stats bayésiennes - Ph. Aegerter 5 Spécificité Spécificité = VN / (VN + FP) = VN / =aptitude à ne détecter que les cas de M+ estime p(S-/M-) limite : Sp = 1 signe pathognomonique Köplick dans rougeole

6 Nov 2008Stats bayésiennes - Ph. Aegerter 6 Exemple de calcul de Se et Sp Maladie hépatique et scanner Se = VP/M+ = 231 /258 = 0,90 Sp = VN/M- = 54/86 = 0,63 RV+ = Se/(1-Sp) = 0,9/0,37 = 2,4

7 Nov 2008Stats bayésiennes - Ph. Aegerter 7 Fiabilité : valeurs prédictives Post test, quel est le risque de maladie ? VP Positive = VP/(VP+FP) estime p(M+/S+) Prev = proba(M) a priori, VPP = a posteriori VP Négative = VN/(VN+FN) RR = VPP/(1-VPN)

8 Nov 2008Stats bayésiennes - Ph. Aegerter 8 Exemple de valeurs prédictives Maladie hépatique et scanner VPP = VP/S+ = 231/263 = 0,875 VPN = VN/S- = 54/81 = 0,67 RR = VPP/(1-VPN) = 0,875/0,33 = 2,65 Dépend de proportion M+

9 Nov 2008Stats bayésiennes - Ph. Aegerter 9 Se, Sp, prévalence et valeurs prédictives VPP = p(M+/S+) = p(S+/M+).p(M+)/p(S+) = Se.P / (Se.P + (1-Sp).(1-P)) quand Sp augmente, VPP augmente quand P augmente, VPP augmente VPN = p(M-/S-) = p(S-/M-).p(M-)/p(S-) = Sp.(1-P) / (Sp.(1-P)+(1-Se).P) quand Se augmente, VPN augmente quand P augmente, VPN diminue peu

10 Nov 2008Stats bayésiennes - Ph. Aegerter 10 Effet de la prévalence soit Se = 0,99 Sp = 0,99

11 Nov 2008Stats bayésiennes - Ph. Aegerter 11 Théorème de Bayes

12 Nov 2008Stats bayésiennes - Ph. Aegerter 12 Statistique Bayesienne Généralisation du théorème p(H/r) = p(r/H). p(H) / p(r) –H : hypothèse ; r = résultat = données observées Approche fréquentiste : test hypothèse –H 0 => r & p(r/H 0 ) < rejet H 0 (r/a p) –Ne renseigne pas sur probabilité H 0 et paramètre –Complément par Int confiance –Inférence classique basée sur P(R| ) avec fixe et inconnue –Approche bayésienne : est une v.a.

13 Nov 2008Stats bayésiennes - Ph. Aegerter 13 Statistique Bayesienne Généralisation du théorème p(H/r) = p(r/H). p(H) / p(r) –H : hypothèse ; r = résultat = données observées Connaissance a priori (prior) : p(H) Vraisemblance des observations : p(r/H) Connaissance a posteriori (posterior) : p(H/r) Posterior = vraisemblance * prior / p(r) Utilisation ddp a posteriori : –Chercher un maximum de cette probabilité –Chercher la valeur moyenne de la distribution –Déterminer un intervalle de crédibilité

14 Nov 2008Stats bayésiennes - Ph. Aegerter 14 Statistique Bayesienne Vraisemblance= p(r/H) soit : p(r=1 / H=2) = 5/10 = 0,5... p(r=1 / H=1)....p(r=1 / H=0) Prior = p(H) =soit : p(H=2)... p(H=1)... p(H=0) P Conjointe = p(r & H) = p(r/ H) * p(H) = Vraisemblance * Prior P prédictive marginale = Somme(P conjointe) = p(r=1) Post = P(H/r) = P Conj / P prédictive soit : p(H=2 / r=1) = 0,05/0,35... p(H=1 / r=1)... p(H=0 / r=1)

15 Nov 2008Stats bayésiennes - Ph. Aegerter 15 Estimation d'une proportion Tirage avec remise : on a observé 4 succès / 10 expériences Vraisemblance = p(r/H) soit : p(f=4/10 / 0%) = 0... p(f=4/10 / 10%) = binom(4,10,0.1)... Prior = p(H) =soit : p(0%)... p(10%)... P conjointe = p(r/ H) * p(H) soit : p(4/10 & 0%) = p(4/10 / 0%) * p(0%) P prédictive marginale = Somme(p conjointe) = p(4/10) Post = P(H/r) = P conj / P prédictive soit :... p(10% / 4/10) = 0,

16 Nov 2008Stats bayésiennes - Ph. Aegerter 16 Estimation d'une proportion Tirage avec remise : on a observé 4 succès / 10 expériences Estimation modale : 40% Estimation moyenne : 41,6% Intervalle de crédibilité à 95% : 20-70% H par % ou 0,1%

17 Nov 2008Stats bayésiennes - Ph. Aegerter 17 Choix loi a priori Permet d'intégrer connaissances antérieures Subjectives ou objectives Ex : delta entre 10 et 15 et pas au-delà Permet de représenter incertitude Non informative Permet de modéliser scepticisme Équivalent hypothèse nulle

18 Nov 2008Stats bayésiennes - Ph. Aegerter 18 ddp Triplot

19 Nov 2008Stats bayésiennes - Ph. Aegerter 19 Estimation d'une différence

20 Nov 2008Stats bayésiennes - Ph. Aegerter 20 Estimation d'une moyenne

21 Nov 2008Stats bayésiennes - Ph. Aegerter 21 Exemple: inférence sur la moyenne dune population gaussienne I.Soit un échantillon gaussien – Modèle génératif: II.Les paramètres inconnus sont On veut tester lassertion: « > 0 » I.Remarque: il sagit du modèle RFX classique

22 Nov 2008Stats bayésiennes - Ph. Aegerter 22 Inférence classique I.On forme le rapport de vraisemblances: Cest (une fonction croissante de) la statistique de Student Si 0, la probabilité que T dépasse un certain seuil est plus petite que si P(T| ) est une loi de Student à n-1 degrés de liberté –On en déduit le seuil correspondant à un risque fixé

23 Nov 2008Stats bayésiennes - Ph. Aegerter 23 Inférence bayésienne Première question: quelle loi a priori ? –Choix standard (a priori non informatif): –Implique en particulier que la priori sur est uniforme Avec cet a priori, la loi a posteriori est donnée par: Variable de Student à n-1 degrés de libertés 0 P( |Y )

24 Nov 2008Stats bayésiennes - Ph. Aegerter 24 Inférence bayésienne I.On en déduit: Autrement dit, la probabilité a posteriori que la moyenne soit positive est: 1 - {P-value du test t classique} !!! I.Dans ce cas, les inférences classiques et bayésiennes sont rigoureusement équivalentes Ce nest plus vrai si on prend un autre a priori

25 Nov 2008Stats bayésiennes - Ph. Aegerter 25 Choix dun a priori informatif A priori gaussien centré sur la moyenne: –s 2 est la variance a priori de la moyenne –Si s 2 est très grande, la priori devient non informatif La probabilité a posteriori de dépend de s –Phénomène de shrinkage 0 P( |Y ) s fini s infini

26 Nov 2008Stats bayésiennes - Ph. Aegerter 26 Essai Eurofoetus METHODS A post-hoc analysis of the Eurofetus trial was conducted using a Bayesian methodology to investigate the credibility of this trial under different hypotheses. The purpose of such an analysis is to put the results of the trial in perspective, based upon available knowledge from published data and archetypal prior scepticism regarding the true benefit of laser surgery compared to amnioreduction in severe TTTS. As opposed to the traditional frequentist approach, the Bayesian approach allows to incorporate prior information as a probability distribution into the raw data available from the trial (the likelihood) and to derive a posterior distribution of the effect of treatment. This posterior distribution determines a credibility interval for the measure of association between the outcome and the treatment option. Bayesian terminology refers to credibility intervals rather than confidence intervals but their interpretation is quite similar in practice. We used the odds-ratio (OR) as the measure of association for treatment effect and considered the asymptotical Gaussian approximation of the log-odds for the analysis. Under Gaussian priors, the posterior distribution of the log-odds was derived from the conjugate-normal distribution and presented as 95% credibility intervals. Several priors were considered: 1. An archetypal sceptical prior regarding the treatment effect that was translated as a normal distribution of the log- odds with a mean m=0 and a standard deviation sd=0.35. This is equivalent to an OR=1 with CI95%=[ ]. This sceptical prior neglects any published data. 2. A critically sceptical prior which is the prior distribution of mean m=0 (no difference between treatments) but with a variance sufficiently small to make the posterior 95% credibility interval reach the zero-effect (OR=1) line, thus making the posterior result of the trial inconclusive. This is equivalent to finding an archetypal person sufficiently convinced of the absence of treatment effect that his opinion remains unchanged even after the data from the trial was made public. 3. A historical prior incorporating the published data so far. This prior was based upon the two retrospective studies available at the time of the trial comparing serial amniodrainage and percutaneous laser surgery15,16. A pooled OR was derived from the published data from these two studies with a fixed effects meta-analysis and using the Mantel-Haenszel method (Table 1). Of notice, no trials or other form of study have been published since the Eurofetus trial, except for the NIH-funded trial but which we excluded because of major differences in the treatment protocol and because of the lack of statistically sound data.

27 Nov 2008Stats bayésiennes - Ph. Aegerter 27 Essai Eurofoetus 4. Finally, the archetypal sceptic prior and the historical prior were sequentially combined, meaning that the posterior distribution of the sceptical prior combined with the historical data is used, in turn, as the prior distribution for the trial6,17,18. This analysis is provided along with a sensitivity analysis in which the importance of the historical data is weighed from 0 5 (the historical data is irrelevant, equivalent to prior 1) to 1 (the historical data has the same weight as the trial) using the power prior defined by Ibrahim and Chen19. This allows presenting the credibility of the trial for an archetypal sceptical with increasing confidence in the pre-trial published data. Hence, by giving a weight of zero to the historical data, we return to situation 1 which ignored this data. 10 Three outcomes have been chosen for the analysis. Perinatal survival of at least one twin is the only one clearly reported in all studies and used as a main outcome in the Eurofetus trial. The Eurofetus trial also presented survival of at least one twin at 6 months, although this outcome was not available from the 2 historical studies. Thus, the analysis of the 6-months survival used priors 1 and 2. Similarly, the data presenting the neurological morbidity in the 2 historical studies 15 was not made use of, because of differences in the measured outcomes and because we did not have access to the individual data from these studies. Nonetheless, the Bayesian analysis of this outcome from the Eurofetus trial was conducted using priors 1 and 2. The trial odds-ratio was computed using a GEE binomial model to adjust for the correlation between twins and using the robust variance of the estimate. Access to the individual data from the trial made this analysis possible.

28 Nov 2008Stats bayésiennes - Ph. Aegerter 28 Essai Eurofoetus

29 Nov 2008Stats bayésiennes - Ph. Aegerter 29 Essai Eurofoetus

30 Nov 2008Stats bayésiennes - Ph. Aegerter 30 Essai Eurofoetus

31 Nov 2008Stats bayésiennes - Ph. Aegerter 31 Logiciels Fist Bayes LePAC Bayesien et fréquentiste WinBUGS Modélisation Bayesienne et MCMC MRC Biostatistics Unit, University of Cambridge, UK basé sur BUGS (Bayesian inference Using Gibbs Sampling) Windows (Wine / Linux) OpenBugs et interface R Brugs


Télécharger ppt "Nov 2008Stats bayésiennes - Ph. Aegerter 1 Statistiques Bayésiennes Intérêt croissant : –Aide décision : contexte = diagnostic –puis RC : contexte = estimation,"

Présentations similaires


Annonces Google