La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

1 Tests et Validation du logiciel 02/2007 – 06/2007.

Présentations similaires


Présentation au sujet: "1 Tests et Validation du logiciel 02/2007 – 06/2007."— Transcription de la présentation:

1 1 Tests et Validation du logiciel 02/2007 – 06/2007

2 2 Test structurel Tests structurels statiques Revue de codes Estimation de la complexité

3 3 Test structurel statique Introduction Regroupe les méthodes qui ne nécessitent pas lexécution du code binaire. Intérêt de ce type de tests : caractère absolu de son approche Inconvénient : pas dexécution du programme avec des « vrai » DT.

4 4 Revue de code Revue de Code REVUE ou iNSPECTION (REVIEW OR iNSPECTION), IEEE 729: Examen détaillé dune spécification, dune conception ou dune implémentation par une personne ou un groupe de personnes, afin de déceler des fautes, des violations de normes de développement ou d'autres problèmes. Technique de contrôle plutôt que de test Auto-correction (Desk-checking) / Lectures croisées (Author-reader cycle)

5 5 Revue de code Exemple de check liste Commentaires Taux Intérêt du commentaire Instructions de tracing dexécution Structure du code Goto… Références aux données Variables non initialisées Pointers fantômes Gestions de indices de tableaux Libération de allocations Calculs Conversions de types Overflow Division par zéro Précédence des opérateurs Forme des décisions Complexité des conditions Utilisation de comparaison <> dans une boucle Définition de constantes Comparaisons Entre types consistants Vérifier opérateurs >= Contrôle Terminaison des boucles Sortie des procédures et fonctions conditions initiales Une itération en trop (ou en moins) Toutes les possibilités dun case testées Taille des modules Mesures de complexité Le plan qualité prévoit en général lutilisation de règles de programmation qui doivent également être vérifiées.

6 6 Mesures de complexité Statistiquement, la complexité dun programme est corrélée avec le nombre de ses défauts. Plusieurs modèles mathématiques proposent une définition de cette complexité

7 7 Métriques dHalstead Complexité liée à la distribution des variables et instructions. Métrique textuelle pour évaluer la taille d'un programme. Alternative au calcul du nombre de lignes de code source. Calcul a posteriori qui ne peut donc en aucun cas supplanter COCOMO ou la méthode des points de fonction.

8 8 Métriques dHalstead La base des mesures est fournie par le vocabulaire utilisé. On évalue le nombre dopérateurs et dopérandes. n1 = nombre dopérateurs uniques n2 = nombre d'opérandes uniques (termes, constantes, variables) N1 = nombre total dapparition de ces opérateurs N2 = nombre total dapparition de ces opérandes.

9 9 Métriques dHalstead Exemple : a := a + 1; 3 opérateurs + := ; 2 opérandes a 1

10 10 Métriques dHalstead Mise en œuvre : « Une fois que le code a été écrit, cette mesure peut être appliquée pour prédire la difficulté dun programme et dautres quantités, en employant les équations de Halstead : l = n1 + n2 Vocabulaire du programme L = N1 + N2 Taille observée du programme Mais aussi Le = n1(Log2 n1) + n2 (Log2 n2) Taille estimée du programme V = L Log2 (n1 + n2) Volume du programme D = (n1/2) (N2/n2) Difficulté du programme L1 = 1/D Niveau du programme E = V/L1 Effort B = V/3000 Nombre derreurs T = E/S Temps NB log2=logarithme en base 2

11 11 Métriques dHalstead Calculez les mesures de Halstead pour le pseudo-code suivant : read x, y, z; type=scalène; i f ( x==y or x==z or y==z ) type=isocèle; i f ( x==y and x==z ) type=équilatéral; i f ( x>=y+z or y>x+z or z>=x+z ) type=pas un triangle; i f ( x<=0 or y<=0 or z<=0) type=données erronées; print type;

12 12 Métriques de Mc Cabe Mac Cabe étudier le logiciel en analysant le graphe de contrôle du programme et calcule la complexité structurelle ou nombre cyclomatique de ce graphe Soit n = Nombre de noeuds (blocs dinstructions séquentielles) e = Nombre darcs (branches suivies par le programme) v = nombre cyclomatique

13 13 Métriques de Mc Cabe Le nombre cyclomatique donne une évaluation du nombre des chemins indépendants dans le graphe et donc une indication sur le nombre de tests nécessaires Cette métrique indique la borne supérieure du nombre de tests à effectuer pour que tous les arcs soient couverts au moins une fois.

14 14 Métriques de Mc Cabe Calcul du nombre cyclomatique: Cas n° 1: 1 point dentrée; 1 point de sortie v= e-n +2 Cas n° 2 i points dentrée; s points de sortie v = e - n + i + s Rappel v = nombre cyclomatique n = Nombre de noeuds e = Nombre darcs

15 15 Métriques de Mc Cabe Dans la pratique il semble que la limite supérieure du nombre cyclomatique soit de 30 environ. La valeur maximum du nombre cyclomatique peut être définie comme un critère de qualité dans le plan qualité. Rq : Le selon(switch) peut donner un nombre cyclomatiquecatastrophique avec une compréhension fort simple du code !!!

16 16 Métriques de Mc Cabe Exercice : soit le programme « recherche dichotomique » en langage C: void recherche_dico (elem cle, elem t[], int taille, boolean &trouv, int &A) { int d, g, m; g=0; d=taille -1; A (d+g) /2; if (t[A]= =cle) trouv=true; else trouv=false; while (g <=d && !trouv) { m= (d+g) /2; if (t[m]= =cle) { trouv=true; A=m; } else if (t[m]> cle) g=m+1; else d=m-1; } Calculer le nombre cyclomatique de cette procédure.

17 17 Tests structurels dynamiques Basés sur le graphe de flot de contrôle (couverture de toutes les instructions, toutes les branches, tous les chemins, …) Basés sur la couverture du flot de données(toutes les définitions de variable, toutes les utilisations, …)

18 18 Tests structurels dynamiques Objectif : Produire les dt qui exécuteront un certain ensemble de comportements (chemins dans le graphe de contrôle) du programme.

19 19 Chemins dans un graphe de contrôle Graphe de contrôle 1 seul sommet 1 seule sortie Nœuds = blocs dinstructions Arcs=possibilité de transfert dun nœud à un autre Chemin de contrôle : chemin qui part de lentrée pour rejoindre la sortie du graphe

20 20 Graphe de contrôle

21 21 Expression des chemins Exemple : soit P le programme suivant If x <= 0 then x:=-x Else x:=1-x; If x=-1 then x:=1; Else x:=x+1; Writeln(x); P admet le graphe ci contre

22 22 Expression des chemins Le graphe G1 est un graphe de contrôle qui admet une entrée -le noeud a -, une sortie -le noeud g. le chemin [a, c, d, e, g]est un chemin de contrôle, le chemin [b, d, f, g]nest pas un chemin de contrôle.

23 23 Expression des chemins Le graphe G1 peut-être exprimé sous forme algébrique sous la forme suivante : G1 = abdfg+ abdeg+ acdfg+ acdeg le signe + désigne le «ou» logique entre chemins. Simplification de lexpression de chemins G1 = a (bdf+ bde+ cdf+ cde) g G1 = a (b + c) d (e + f) g Cette expression sappelle lexpression des chemins du graphe.

24 24 Expression des chemins Facilité de construction en se basant sur un graphe structuré. Association dopération (+ ou *) aux structures primitives dun graphe structuré

25 25 Expression des chemins

26 26 Expression des chemins Soit le programme P2 suivant : if n <= 0 then n := 1-n end; if not 2 div n Then n := n / 2 Else n := 3*n + 1 end ; write(n); Fournir le graphe de contrôle Calculez lexpression des chemins

27 27 Expression des chemins Soit le programme P3 suivant : i := 1; found:= false; while(not found) do begin if (a[i] = E) then begin found:= true; s := i; end; i := i + 1; end; Fournir le graphe de contrôle Calculez lexpression des chemins

28 28 Expression des chemins Soit le programme P4 suivant : For (i=1 to 10) for (j=1 to 10) print i*j next

29 29 Chemins exécutables et non exécutables Reprenons le graphe ci contre Trouver une DT permettant de couvrir le chemin [a,b,d,f,g] On dit que ce chemin est non exécutable.

30 30 Chemins exécutables et non exécutables Trouver une DT permettant dexécuter le chemin [a,c,d,e,f,g,h] De nouveau… expression de chemin !

31 31 Chemins exécutables et non exécutables Chemin non exécutable : bug systématique ? P le programme suivant : Read (choix); If choix=1 then x:=x+1; If choix=2 then x:=x-1; Fournir le graphe de contrôle Fournir une DT pour traiter chaque chemin

32 32 Chemins exécutables et non exécutables P le programme suivant : Read (choix); If choix=1 then x:=x+1; If choix=2 then x:=x-1; Restructurer le programme Fournir le nouveau graphe de contrôle Fournir une DT pour traiter chaque chemin Fournir lexpression de chemin.

33 33 Expression et nombre de chemins Exemples dexpressions déjà traitée: ab(c(1 + d)eb)*f a (1+b)c(e+d)f a ( 1+b c (1 + de (1 + fg (1 + i) ) ) h Lien direct entre expression et nombre de chemins de contrôle maximum Remplacer chaque nœud par « 1 » et effectuer loperation arithmétique. 1*1(1(1+1)1*1)*1=2 1(1+1)1(1+1)1=4 Le dernier ….


Télécharger ppt "1 Tests et Validation du logiciel 02/2007 – 06/2007."

Présentations similaires


Annonces Google