La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Loi de la conservation de l’énergie

Présentations similaires


Présentation au sujet: "Loi de la conservation de l’énergie"— Transcription de la présentation:

1 Loi de la conservation de l’énergie
Énoncé Énergie (interne, potentielle et cinétique) Travail et chaleur Chaleur spécifique. Enthalpie Procédés thermodynamiques dans l’atmosphère Température potentielle

2 Premier principe de la thermodynamique
Principe de la conservation d ’énergie: au cours d ’un processus quelconque, l ’énergie de l ’univers peut changer de forme, mais ne peut être ni crée ni détruite.

3 Énergie total d ’une particule d ’air
En météorologie les principales formes d ’énergie associées à une particule d ’air sont: Énergie interne Énergie cinétique moyenne Énergie potentielle

4 Notre système: particule d ’air en équilibre
Équilibre chimique Équilibre thermique Équilibre mécanique Nous concluons donc que l ’énergie de notre système est l ’énergie interne.

5 L ’énergie interne (approche de la thermodynamique classique)
On appelle énergie interne U du système une fonction d'état telle que son accroissement, lors des transformations évoluant dans une enceinte adiabatique, est égale au travail fourni au système par les forces extérieures pour le faire passer de l'état initial à l'état final. L'énergie interne d'un système dépend uniquement de l'état thermodynamique de celui-ci. C ’est une variable d ’état et, en termes mathématiques une différentielle exacte.

6 Propriétés des différentielles exactes.
Soit df une différentielle exacte: 1) La variation de f entre l ’état 1 et 2 ne dépend pas du type de transformation qui a amené le système de l ’état 1 à l ’état 2. 2) Pour f(x,y)

7 Premier principe La façon la plus simple de mettre en évidence l ’énergie est par sa variation. L ’énergie peux être transférée à un système principalement sous deux formes: La chaleur q ou énergie thermique échangée: énergie en mouvement le travail w, qui peut être mécanique, électrique, ….

8 Premier principe: expression mathématique
Approche égoïste

9 Notion de chaleur La chaleur est de l ’énergie en mouvement dont
l ’écoulement se fait spontanément d ’un milieu à température plus élevée à celui de plus basse température. Équivalence travail-chaleur-énergie: les expériences de Joule ...

10 Notion de travail Le travail est l ’énergie produite par le déplacement d ’une masse dans un champ de forces : A

11 Notion de travail Dans le cas d ’une particule d ’air de masse m
qui subit une expansion réversible de V à V + dV Où p est la pression extérieur qui, dans le cas réversible est égale à la pression de la particule. Dans le cas non réversible ...

12 Travail d ’expansion dans l ’atmosphère
Soulèvement par convection

13 Soulèvement orographique
Travail d ’expansion dans l ’atmosphère Soulèvement orographique

14 Travail d ’expansion dans l ’atmosphère
Soulèvement dans les régions de convergence

15 Travail d ’expansion dans l ’atmosphère
Soulèvement dans les régions de convergence

16 Premier principe expression mathématique
Puisque u est une fonction d ’état, pour un système homogène ? ou

17 Expérience de Joule Si on laisse se détendre un gaz dans un récipient vide on n’observe aucun changement de température. Est-ce que c ’est toujours vrai? En quel cas ceci est strictement vrai ?

18 Expérience de Joule Comme l'expansion se fait dans le vide, le gaz ne fait aucun travail contre l'environnement (ni celui-ce sur le système) Puisque l'appareil est dans une enceinte adiabatique: Alors, par le premier principe du = 0 :

19 Expérience de Joule Conclusion: pour un gaz parfait,
La variation de température observée est 0, alors: Conclusion: pour un gaz parfait,

20 Cas particulier d ’un gaz parfait
L ’énergie interne d ’un gaz parfait ne dépend du volume. Elle dépend rien que de la température:

21 Chaleur spécifique On appelle capacité calorifique
(capacité calorifique vraie) C d'un corps le rapport de la quantité élémentaire de chaleur , qui lui est communiquée lors d'un processus quelconque, à la variation correspondante de température du corps:

22 Chaleur spécifique La chaleur spécifique c est la capacité calorifique
de l'unité de masse d'un corps homogène. Pour un corps homogène c = C/m où m est la masse du corps. Pour un mélange de N gaz où ci et gi sont la chaleur spécifique et la concentration pondérale du i-ème composant du mélange.

23 Chaleur spécifique Quelle est la valeur de c dans
La chaleur spécifique d'une substance est fonction des variables d'état et du processus qui a amené a la variation de température. Chaque substance a une infinité de chaleurs spécifiques, mais il y a deux qui sont d'importance fondamentale. La chaleur spécifique à volume constante cv et la chaleur spécifique à pression constante cp Quelle est la valeur de c dans un processus isotherme ???

24 Chaleur spécifique à volume constante
Considérons le premier principe de la thermodynamique et substituons la valeur de du Dans un procédé à volume constant, et la chaleur échangée pendant le procédé est:

25 Nouvelle formulation du premier principe
et Donne: valide pour toute substance.

26 Cas isobare: premier principe
pour un processus isobarique, dp = 0, et La premier principe de la thermodynamique appliqué à un processus isobarique devient

27 Chaleur spécifique à pression constante
Pour un gaz parfait ???

28 Équation de Robert Mayer

29 Le premier principe appliqué aux gaz parfaits

30 Enthalpie Imaginons un procédé que se réalise à pression constante:

31 Enthalpie Pour un processus isobarique:

32 Enthalpie

33 Enthalpie Dans un procédé isobarique, dp = 0 et

34 Premier principe et enthalpie
Dans un procédé isobarique, dp = 0 et

35 Premier principe et enthalpie
Pour toute substance: Pour un gaz parfait:

36 Résumé: Substance quelconque Gaz parfait

37 Résumé: Substance quelconque Gaz parfait

38 Casse tête adiabatique isobare 2 4 3 isochore 1 5


Télécharger ppt "Loi de la conservation de l’énergie"

Présentations similaires


Annonces Google