La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Sylvain FOURNIER 16/10/2008 EDMSTII

Présentations similaires


Présentation au sujet: "Sylvain FOURNIER 16/10/2008 EDMSTII"— Transcription de la présentation:

1 Sylvain FOURNIER 16/10/2008 EDMSTII
Outils pour des problèmes industriels de tournées de véhicules avec transbordement Sylvain FOURNIER 16/10/2008 EDMSTII Gerd FINKE Nadia BRAUNER-VETTIER Bruno DE BACKER

2 Cadre de la thèse Logiciel ILOG TPO Minimiser les coûts de transport
Fournir des plans de route aux entreprises de transport Minimiser les coûts de transport coût du carburant considérations écologiques Sylvain FOURNIER

3 Plan de la soutenance Problème de tournées de véhicules avec transbordement Modèles linéaires en variables mixtes Petites instances Heuristique à deux phases Instances moyennes et grandes Sylvain FOURNIER

4 Problème de tournées de véhicules avec transbordement
Sylvain FOURNIER

5 Exemple simple A B dist=1 min distance totale C D Sylvain FOURNIER

6 Exemple simple A B C D Coût = 4 « Chacun pour soi » Sylvain FOURNIER
Autrement appelée : solution du vieux couple « Chacun pour soi » C D Coût = 4 Sylvain FOURNIER

7 Exemple simple A B « gentleman » C D Coût = 3 Sylvain FOURNIER

8 Exemple simple A B H échange C D Coût = Sylvain FOURNIER

9 Description de l’instance
B H 2 véhicules 4 expéditions 5 sites (dont 1 hub) C D Sylvain FOURNIER

10 Réseau de type « hub-and-spoke »
2 produits ensemble Sylvain FOURNIER

11 Réseau de type « hub-and-spoke »
2 produits ensemble tournées Sylvain FOURNIER

12 Aspects du problème Problème de ramassage et livraison (PDP)
The Vehicle Routing Problem (Toth and Vigo, 2002) The General Pickup and Delivery Problem (Savelsbergh and Sol, 1995) Problème de flots Network flows:Theory, Algorithms and Applications (Ahuja et al., 1993) Problème de localisation de hub Network Hub Location Problems : The State of the Art (Alamur and Kara, 2008) Sylvain FOURNIER

13 Contraintes supplémentaires
Capacités des véhicules Fenêtres de temps Pas de stockage aux hubs Incompatibilités Sites de départ et d’arrivée des tournées peuvent être imposés ou non Nombre d’arrêts limité pour les véhicules Sylvain FOURNIER

14 Alternative d’expédition
B ou ZSH C D Sylvain FOURNIER

15 Solution avec alternatives
B H ZSH C D Coût = Sylvain FOURNIER

16 Coûts industriels Coûts fixes
Coûts kilométriques origine-destination (DTC) Coûts kilométriques supplémentaires (ADC) Coûts de « saut de zone » (ZSC) qmax ADC = coût des détours pas linéaires ZSH Σq Sylvain FOURNIER

17 Contexte de la thèse ILOG TPO 3.1.3 est un « gentleman »
Difficultés au niveau du transbordement Recherche locale Grand nombre de possibilités Outil capable d’aider ILOG TPO TPO = rech locale (+CP) coopérer modèle math (CPLEX) et CP Sylvain FOURNIER

18 Modèles en variables mixtes
Intérêt : cerner le pb, résoudre petites instances jusqu’à optimum Sylvain FOURNIER

19 Généralités Modèles les plus fidèles possible Pas de stockage aux hubs
Base de contraintes commune Une seule visite à chaque site pour tout véhicule Sylvain FOURNIER

20 Modèle PDP Résout le PDP Le plus proche du problème traité
Expédition : site de ramassage site de livraison quantité Le plus proche du problème traité Sylvain FOURNIER

21 Modèle PDP Contraintes générales de temps
Contraintes de temps spécifiques au PDP Contraintes de flot de véhicules Contraintes binaires spécifiques au PDP Coûts détaillés avec linéarisation simple Je vous épargne le détail des contraintes I : nombre de sites K : nombre de véhicules S : nombre d’expéditions i O(I²KS) k j Sylvain FOURNIER

22 Modèle MVRPPD Résout le MVRP(PD)
-1 Résout le MVRP(PD) Plusieurs produits Offres et demandes Permet le partage des chargements (split loads) +2 -3 -1 -3 +6 -3 PDP cap=5 3 passages MVRP cap=5 2 passages -3 +9 -3 Sylvain FOURNIER

23 Réduction PDP-MVRP Triviale : 1 expédition → 1 produit Agrégation → →
-3 3 +3 -2 2 -1 1 +2 1 +1 +1 -1 -3 3 -5 +3 +3 -2 2 ou -1 -1 1 +2 +4 1 +2 -1 -1 Sylvain FOURNIER

24 Minimiser le nombre de produits
Définition d’un line-graph particulier Trouver une partition minimale en cliques Problème de coloration sur le graphe complémentaire Sylvain FOURNIER

25 Inconvénients du modèle MVRP
Absence de : fenêtres de temps sur les visites contraintes d’incompatibilité entre produits alternatives Sylvain FOURNIER

26 Améliorations Réduction de la taille du problème
élimination de sites élimination de véhicules (heuristique) Algorithme de plans coupants Priorités de branchements Coupes dédiées O(I²KS) Sylvain FOURNIER

27 Coupes dédiées Elimination de sous-tours
en cas de relaxation des contraintes de temps principe : tournée est fermée si et seulement si un des sites en est à la fois le départ et l’arrivée Coupes liées à l’activité des véhicules idée : tout véhicule doit accomplir une action dans chaque site visité Elimination des symétries ordre sur l’utilisation des véhicules similaires Sylvain FOURNIER

28 Résultats (modèle PDP)
Taille Plans coupants Plans coupants + Coupes I K S valeur temps 19 18 12 1 1055,1804 440,5677 662,5282 134,108 20 46 0,7626 0,8808 0,9556 0,9264 0,9919 0,9878 0,8464 1,1258 1,0811 0,9108 0,5393 32 42 8 1,8832 2,773 36 4 1,3557 0,3454 1,5755 0,3275 0,6704 0,2376 1,1276 1,2058 0,4737 0,6579 0,9395 0,7803 29 52 3,3308 1,1472 8,8628 21 51 6 7,7895 1,6053 Moy. géom. 1,0123 2,5352 0,9917 1,6521 # Meilleur 5 9 # Moins bon 3 Modèle amélioré Rapport : Modèle basique instances petites mais difficiles Sylvain FOURNIER

29 Heuristique à deux phases
Problèmes traités : jusqu’à 750 expéditions Sylvain FOURNIER

30 Motivations Résoudre de grandes instances
Instances réelles Jusqu’à 750 expéditions Utiliser le moteur d’ILOG TPO Fournir une aide pour le transbordement Sylvain FOURNIER

31 Principe Etape 1 Figer, pour chaque expédition, le chemin de hubs le plus prometteur Résoudre avec ILOG TPO Etape 2 Relâcher ces contraintes Continuer (et finir) la résolution dans ILOG TPO, à partir de la solution trouvée à l’étape 1. Etape 0 : déterminer très rapidement pour chaque expédition le chemin de hubs le plus prometteur Sylvain FOURNIER

32 Chemins possibles A B H ZSH C D A.B A.H.B A.ZSH A.H.ZSH
Sylvain FOURNIER

33 3 façons de figer A B H ZSH C D ou ou A.B A.H.B A.ZSH A.H.ZSH
Sylvain FOURNIER

34 Modèle IP simplifié Pour le choix des chemins de hubs
Peu de caractéristiques représentées Pas de contrainte de temps Multiflot de véhicules (répartis par flotte) Expéditions définies par leurs chemins possibles A A A.H.B B B exemple : supposition « flotte » homogène H H A.H.D 1 1 C.H.B 1 1 C C D D C.H.D Sylvain FOURNIER

35 Agrégation des sites proches
Pas de ramassages (ou livraisons) successifs Chemins de hubs de type A.H1.H2.(…).B Regroupement des sites voisins Avantage : réduction de la taille du problème Sans agrégation Avec agrégation Sylvain FOURNIER

36 Organisation des tests
Instances réelles avec un hub par expédition Quantités comparées : Valeur de la solution finale Temps de calcul Comparaison des rapports : Heuristique à 2 phases ILOG TPO seul Temps de calcul limité à 3h Instances réparties en 4 classes selon leur taille Sylvain FOURNIER

37 Méthode peu contrainte
Heuristique Rapport : ILOG TPO seul Classe Moy. géom. Min Max # Moins bon # Meilleur valeur temps 4-12 1,005 0,7224 1 0,4545 1,0774 1,8213 2 6 13 13-43 1,0206 0,6771 0,9477 0,2716 1,2392 1,2907 18 9 4 32 44-85 1,0113 0,5443 0,9895 0,2589 1,0671 1,0159 26 5 1,0035 0,8126 0,982 0,3098 1,0299 1,9218 11 Total 1,0125 0,6584 55 20 15 88 autres méthodes : Value et Time plus accentués Sylvain FOURNIER

38 Indications aléatoires
But : tester la qualité des indications de l’IP Moyenne sur 20 exécutions Sous-ensemble d’instances Sylvain FOURNIER

39 Comparaison des rapports
Indications de l’IP Rapport : Indications aléatoires Classe Moy. géom. Min Max # Moins bon # Meilleur Interm Finale Temps Int Fin T 4-12 0,9364 0,9912 0,7567 0,8222 0,9414 0,5222 1,1134 1,0914 1,0784 4 2 11 6 13 13-43 0,7848 0,986 0,9036 0,0071 0,8549 0,4671 1,0864 1,1917 1,6637 12 36 24 25 44-85 0,9361 0,9937 0,7832 0,9196 0,9866 0,6267 0,9682 0,9997 1,0016 1 8 7 0,9344 1,0174 0,9911 Total 0,8403 0,9887 0,8511 14 15 56 37 46 Sylvain FOURNIER

40 Recherche locale d’ILOG TPO
Sylvain FOURNIER

41 Conclusions et perspectives
Sylvain FOURNIER

42 Petites instances Instances à 12 expéditions ou moins 2 modèles MIP
Donnent la preuve d’optimalité Améliorer encore la modélisation l’algorithme de plans coupants Sylvain FOURNIER

43 Instances de grande taille
Bonne collaboration entre ILOG TPO et les indications Gain de temps par rapport à ILOG TPO seul Prometteur sur des instances plus complexes Autres types de coopération à explorer Sylvain FOURNIER

44 Tournées similaires Sylvain FOURNIER

45 Sylvain FOURNIER 16/10/2008 EDMSTII
Outils pour des problèmes industriels de tournées de véhicules avec transbordement Sylvain FOURNIER 16/10/2008 EDMSTII Gerd FINKE Nadia BRAUNER-VETTIER Bruno DE BACKER

46 Meilleur placement du hub
ZSH C D Coût = Sylvain FOURNIER

47 Technique d’agrégation
Parcours des sites dans l’ordre Si le site i est proche d’un site similaire, centre d’un agrégat déjà formé, alors il est inclus dans l’agrégat Sinon, il forme un nouvel agrégat Sylvain FOURNIER

48 Algorithme utilisé Ordre arbitraire sur les expéditions
1 Ordre arbitraire sur les expéditions Les produits sont formés au fur et à mesure du parcours des expéditions A chaque étape, si l’expédition i peut être associée à un produit p (même origine ou même destination), c’est fait sinon, elle forme seule un nouveau produit p+1 2 3 4 Sylvain FOURNIER

49 Agrégation : performance
Algorithme glouton mais efficace Pas de garantie de performance : Instance I : 1 3 4 2 Sylvain FOURNIER

50 Modèle MVRP Contraintes générales de temps
Contraintes de temps spécifiques au PDP Contraintes de flot Contraintes binaires spécifiques au PDP Contraintes de chargement Coûts détaillés avec linéarisation simple, sans coût ZSC Sylvain FOURNIER

51 Inconvénients des modèles
Beaucoup de contraintes PDP : O(|I|².|K|.|S|) MVRP : O(|I|².|K|.|P|) Beaucoup de contraintes « big-M » PDP : O(|I|².|K|) |I| : nombre de sites |K| : nombre de véhicules |P| : nombre de produits |S| : nombre d’expéditions Sylvain FOURNIER

52 Contraintes « big-M » Soient X ≥ 0 et Y non contrainte
Contrainte conditionnelle : si X=0 alors Y ≥ 0 Modélisation : Y + M.X ≥ 0 M suffisamment grand M doit être le plus petit possible Apparaissent dans les contraintes de temps les contraintes de chargement (MVRP) Sylvain FOURNIER

53 Comparaison des modèles
Plus de contraintes « big-M » pour le MVRP Plus de variables binaires pour le PDP |P| ≤ |S| Sylvain FOURNIER

54 Modèle à base de chemins
Sylvain FOURNIER


Télécharger ppt "Sylvain FOURNIER 16/10/2008 EDMSTII"

Présentations similaires


Annonces Google