La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

HOMMAGE A PIERRE HUARD ET JOSEPH-LOUIS LAGRANGE 24-25 novembre 2008.

Présentations similaires


Présentation au sujet: "HOMMAGE A PIERRE HUARD ET JOSEPH-LOUIS LAGRANGE 24-25 novembre 2008."— Transcription de la présentation:

1 HOMMAGE A PIERRE HUARD ET JOSEPH-LOUIS LAGRANGE novembre 2008

2 Joseph-Louis Lagrange et Pierre Huard

3

4 Basé sur

5

6 Recherche bibliographique Lors de ma recherche bibliographique pour cet article, javais cherché "Pierre Huard" et javais trouvé quelques références intéressantes…

7

8

9

10

11

12

13

14 Aussi intéressantes que ces références puissent être, ça nétait pas vraiment cela que je cherchais…

15

16 ça nétait pas vraiment cela non plus…

17 Enfin trouvé! La dualité… Les premiers travaux de Pierre Huard sur la dualité en programmation non linéaire (1962) complémentaient ceux de Dorn, Mangasarian et Wolfe. La dualité "à la Huard" est toujours exploitée et utilisée de nos jours, voir par exemple Yang, Yang et Theo, 2005, Appl. Math. Lett.Appl. Math. Lett

18 Lalgorithme dual Pierre Huard a ensuite proposé une méthode de résolution des programmes convexes, qui est basée sur cette théorie de la dualité ("Convex programming - dual algorithm," Research Report 63-21, O.R. Center, University of California at Berkeley, 1963).

19 La méthode des centres La méthode des centres de Huard ("Résolution des programmes mathématiques par la méthode des centres," Note E.D.F. HR 5690, 1964) est maintenant "considérée comme une étape fondamentale de l'optimisation linéaire" (Roos, NMC 2004, Tilburg, April 17, 2004).

20 La méthode des centres La méthode des centres de Huard ("Résolution des programmes mathématiques par la méthode des centres," Note E.D.F. HR 5690, 1964) est maintenant "considérée comme une étape fondamentale de l'optimisation linéaire" (Roos, NMC 2004, Tilburg, April 17, 2004). Elle précédait d'une vingtaine d'années la méthode de Karmarkar.

21 Une vraie méthode de points intérieurs La méthode des centres est une vraie méthode de points intérieurs, au sens moderne du terme, autrement dit, elle est polynomiale et est basée sur le concept de "central path".

22 Une méthode polynomiale Roos (Handbook of Applied Optimization, 2002) écrit: soon it became apparent that this [the Projective Method of Karmarkar] was related to classical methods like the Affine Scaling Method of Dikin (…), the Logarithmic Barrier Method of Frisch (…) and the Center Method of Huard (…), and that the last two methods, when tuned properly, could also be proved to be polynomial.

23 Ces Journées Ces deux journées vont nous permettre de mesurer encore mieux (1) à quel point cette méthode innovait dans le domaine de la programmation linéaire

24 Ces Journées Ces deux journées vont nous permettre de mesurer encore mieux (1) à quel point cette méthode innovait dans le domaine de la programmation linéaire (2) et limportance des méthodes de points intérieurs en programmation linéaire.

25 La méthode simplex sans inverse explicite En 1979, Pierre Huard a proposé une méthode simplex sans inverse explicite. On l'appelle maintenant l'algorithme de Gauss-Huard. Cette méthode a été revue et exploitée depuis par Hoffmann et Pronk, (Report CS-94-03, University of Amsterdam,1994) et Dekker, Hoffman et Potma (Computing, 1997).

26 Stabilité numérique "Une nouvelle méthode pour résoudre des systèmes linéaires denses a été publiée par Huard (E. D. F. - Bulletin de la D. E. R., Série C, no 2, 1979). C'est une variante efficace de la méthode de Gauss-Jordan qui est maintenant connue sous le nom de Gauss-Huard. … La stabilité numérique si l'on pivote en lignes plutôt qu'en colonnes a été démontrée par Dekker (1997). Cet algorithme est également proche de la factorisation LU." (Hoffmann, Linear Algebra and Its Applications, 1998)

27 Les fonctions multivoques Pierre Huard a aussi travaillé sur la théorie des fonctions multivoques. L'idée est que si à chaque point x on associe un ensemble F(x), on peut définir un algorithme itératif en choisissant un successeur du point courant x k n'importe où dans l'ensemble F(x k ). Les premiers articles, qui étendaient des travaux de Zangwill, datent des années 70 (Huard 1975, 1979, Fiorot et Huard 1979). Ces travaux permettent detudier dune façon globale les propriétés des algorithmes, en particulier leur convergence (1979, 1981, 1982, 1983).

28 Quasi-Newton Pierre Huard a aussi travaillé, souvent avec Jean-Claude Dodu, sur les méthodes de Quasi- Newton. Une synthèse importante écrite en 1990 par Dodu et Huard contient les références appropriées.

29 Autre chose… Tout ceci nest quun sous-ensemble (strict) des travaux de Pierre Huard. Je laisse à dautres, plus au fait des recherches que jai laissées dans lombre, le soin den parler. Je voudrais maintenant changer un peu de sujet…

30 Lancêtre académique

31 La première génération

32 Petits-enfants

33

34

35

36

37

38 Arrière-petits-enfants

39 Si vous avez des renseignements supplémentaires, il est facile de les ajouter sur le site suivant:

40 Rappel: on entre dabord le nom du thésard, puis celui de son patron de thèse…

41 Certaines choses que j'ai apprises du maître (1) Rigueur mathématique: Ce que j'ai gardé de la pédagogie du maître... Schémas de démonstration

42 Certaines choses que j'ai apprises du maître (1) Rigueur mathématique: Ce que j'ai gardé de la pédagogie du maître... Schémas de démonstration Remonter la filière des démonstrations jusqu' à ce que lon ait un ensemble complet de théorèmes (cours polycopiés, auquels je me réfère encore quand je veux savoir de quoi dépendent certaines propriétés).

43 Certaines choses que j'ai apprises du maître (1) Rigueur mathématique: Ce que j'ai gardé de la pédagogie du maître... Schémas de démonstration Remonter la filière des démonstrations jusqu' à ce que lon ait un ensemble complet de théorèmes (cours polycopiés, auquels je me réfère encore quand je veux savoir de quoi dépendent certaines propriétés). Ne pas être satisfait tant qu'il reste un vide quelque part...

44 AÏE LA TETE!

45 Certaines choses que j'ai apprises du maître (2) rigueur et honneteté intellectuelle Rendre à chacun ce qui lui est dû ou toujours citer ses sources

46 Certaines choses que j'ai apprises du maître (2) rigueur et honneteté intellectuelle Rendre à chacun ce qui lui est dû ou toujours citer ses sources Difficile à faire accepter à certains jeunes lorsqu'ils réinventent la roue...

47 Certaines choses que j'ai apprises du maître (3) curiosité intellectuelle Se poser des questions Savoir regarder LOOK Continuer à chercher si on ne trouve rien

48 Finalement, une leçon pratique: Quand jai demandé à Monsieur Huard pourquoi il me suggérait de travailler sur la qualification des contraintes plutôt que de garder le sujet pour lui-même, il ma répondu quon ne pouvait pas tout faire!

49 Finalement, une leçon pratique: Quand jai demandé à Monsieur Huard pourquoi il me suggérait de travailler sur la qualification des contraintes plutôt que de garder le sujet pour lui-même, il ma répondu quon ne pouvait pas tout faire! Nous aurions souvent besoin quon nous le redise…

50 Et maintenant… Quelques photos…

51 CONCENTRATION

52 CONGRES DENGHIEN 2003

53

54 CONGRES DENGHIEN 2007

55 CONGRES GASTRONOMIQUE DAUVERS sur OISE

56

57

58

59 JOURNEES EN L'HONNEUR DE PIERRE HUARD

60 Et la meilleure pour la fin!

61 INSPIRATION

62 Et pour terminer: Merci, Pierre!

63 Et pour terminer: Merci, Pierre! De la part de vos descendants académiques


Télécharger ppt "HOMMAGE A PIERRE HUARD ET JOSEPH-LOUIS LAGRANGE 24-25 novembre 2008."

Présentations similaires


Annonces Google