Notions de fonction Initiation.

Slides:



Advertisements
Présentations similaires
RAS 3,1 Modéliser des situations à l’aide de relations et les utiliser afin de résoudre des problèmes avec et sans l’aide de technologie.
Advertisements

CHAPITRE 7 DROITES ET SYSTEMES.
Sens de variation d’une fonction
x Autour d’un tableau de variation f (x)
FONCTION LINEAIRE Bernard Izard 3° Avon FL
Introduction à la notion de fonction 1. Organisation et gestion de données, fonctions 1.1. Notion de fonction Déterminer l'image d'un nombre par une fonction.
25 - Fonctions affines Définition Soit a et b deux nombres donnés.
Droites et équations.
Fiche méthode : Réaliser un graphique
NOTION DE FONCTION 1. Un exemple de fonction
Résoudre graphiquement une équation ou une inéquation simple
Les fonctions Colegiul National “Mihai Eminescu”, Iasi -Définition
Chapitre 2: Les régularités et les relations
Comportement à l’infini d’une fonction
Croissance et extremums
Résoudre graphiquement f(x)≤-2
Problème Pondichéry Juin 2003
Fonctions: lectures graphiques
Vers la fonction exponentielle.
Courbes, lecture de courbes :
La fonction est décroissante La fonction est croissante
La fonction quadratique
La fonction quadratique
Elaboration d’un tableau de variation
Fonction vs Relation.
Inéquations du second degré à deux variables
Les fonctions leurs propriétés et.
Les relations - Règles - Variables - Table de valeurs - Graphiques.
ANALYSE D’UNE TENSION ALTERNATIVE PERIODIQUE.
La fonction quadratique
LA FONCTION LINÉAIRE Objectifs :
CHAPITRE 2 LES SITUATIONS FONCTIONNELLES
Soit la fonction f (x) = x2 + 1
Sciences de la Vie et de la Terre et Mathématiques
REPRESENTATION GRAPHIQUE D ’UNE FONCTION AFFINE
Fonctions Généralités.
LES FONCTIONS DERIVEES
Les fonctions leurs propriétés et.
Les fonctions Les propriétés.
Les fonctions Leurs propriétés.
Les Fonctions et leurs propriétés.
CHAPITRE 1: LES FONCTIONS.
La fonction quadratique
Thème: Les fonctions Séquence 1 : Généralités sur les fonctions
La fonction carrée est une fonction paire
Thème: Les fonctions Séquence 4 : Variations d’une fonction
21 - Notion de fonction Définition
Leçon 4 NOTION DE FONCTION Fabienne BUSSAC.
Fabienne BUSSAC FONCTIONS LINEAIRES – PROPORTIONNALITE
Construire un graphique
NOTION DE FONCTION, SUITE
L’ETUDE D’UNE FONCTION Etape par étape
REVISIONS POINTS COMMUNS
Elaboration d’un tableau de variation
Comment tracer une courbe sur du papier millimétré
Les premiers pas vers les calculs statistiques
Les graphiques en sciences physiques
Les relations - règles - variables - table de valeurs - graphiques.
CONSTRUCTION D’UN TABLEAU DE VARIATION
Les fonctions Dresser un tableau de variation à partir d’une représentation graphique.
Construire un graphique de type courbe
Les fonctions Les propriétés. Chaque fonction possède ses propres caractéristiques: Ainsi l’analyse de ces propriétés permet de mieux cerner chaque type.
Seconde 8 Chapitre 3: Les fonctions
REPRESENTATION GRAPHIQUE
CHAPITRE 2 LES SITUATIONS FONCTIONNELLES
f(x) = 2x sur l’intervalle [-3;5]
Les propriétés des fonctions
Cours de mathématiques
Transcription de la présentation:

Notions de fonction Initiation

Notations et vocabulaire Ci-contre, une courbe dans un repère orthonormé. L ’axe des abscisses (l ’axe des « x ») est l ’axe horizontal. A L ’axe des ordonnées (l ’axe des « y ») est l ’axe vertical. C Lorsque l ’on donne les coordonnées d ’un point, on donne d ’abord l’abscisse puis l’ordonnée. B D Cherche les coordonnées des points A, B, C et D. Le point A est de coordonnées: ( 2 ; 1 ) Le point B est de coordonnées: ( 1,5 ; -0,5 ) Le point C est de coordonnées: ( 0 ; 0,5 ) ( -1 ; -0,7 ) Le point D est de coordonnées:

Notations et vocabulaire Images et antécédents Soit f la fonction définie sur l ’intervalle [-1;3] ce qui veut dire que l ’on trace la fonction pour les « x »de -1 à 3 x et que pour chaque valeur « x » de cet intervalle, il existe un unique f(x) correspondant. f(x) On dit que: f(x) est l ’image de x ou encore: x a pour image f(x) On dit que : x est l’ antécédent de f(x) ou encore: f(x) a pour antécédent x

Notations et vocabulaire Le maximum est la plus grande ordonnée d ’un point de la courbe On cherche le point de la courbe le plus « haut » On lit l ’ordonnée de ce point : c ’est le maximum On dit que 1 est le maximum de f On peut préciser: il est atteint pour x = -1

Notations et vocabulaire Le minimum est la plus petite ordonnée d ’un point de la courbe On cherche le point de la courbe le plus « bas » On lit l ’ordonnée de ce point : c ’est le minimum On dit que -1 est le minimum de f On peut préciser: il est atteint pour x = 0

Soit f la fonction définie sur [-1,2 ; 2,2] par f(x) = x2 - 1. Calculer une image Soit f la fonction définie sur [-1,2 ; 2,2] par f(x) = x2 - 1. Ce qui signifie que l ’on va calculer des images pour les valeurs de « x » comprises entre -1,2 et 2,2. Et voilà la formule que l ’on va utiliser pour les calculs.

Soit f la fonction définie sur [-1,2 ; 2,2] par f(x) = x2 - 1. Calculer une image Soit f la fonction définie sur [-1,2 ; 2,2] par f(x) = x2 - 1. Calculer l ’ image de 0. Ce qui signifie calculer f(0). Calcul de f(0): f(x) = x2 - 1 f(0) = 02 - 1 = 0 - 1 = - 1 Réponse: f(0) = -1 l ’image de 0 est -1. ou

Essayez de trouver la réponse avant de cliquer Calculer une image Soit f la fonction définie sur [-1,2 ; 2,2] par f(x) = x2 - 1. Calculer l ’ image de 1,3. Essayez de trouver la réponse avant de cliquer Calcul de f(1,3) : f(x) = x2 - 1 f(1,3) = 1,32 - 1 = 1,69 - 1 = 0,69 Réponse: f(1,3) = 0,69 l ’image de 1,3 est 0,69. ou

Essayez de trouver la réponse avant de cliquer Calculer une image Soit f la fonction définie sur [-1,2 ; 2,2] par f(x) = x2 - 1. Calculer l ’ image de -1,1. Essayez de trouver la réponse avant de cliquer Calcul de f(-1,1) : f(x) = x2 - 1 f(-1,1) = (-1,1)2 - 1 = 1,21 - 1 = 0,21 Réponse: f(-1,1) = 0,21 l ’image de -1,1 est 0,21. ou Attention: il est indispensable de mettre des parenthèses autour de -1,1.

Essayez de trouver la réponse avant de cliquer Calculer une image Soit g la fonction définie sur [-10 ; 10] par g(x) = x2 + 2x - 6 Calculer l ’ image de 4 par la fonction g. Calcul de g(4) : Essayez de trouver la réponse avant de cliquer g(x) = x2 + 2x - 5 g(4) = 42 + 2x4 - 6 g(4) = 16 + 8 - 6 = 18 l ’image de 4 est 18. Réponse: g(4) = 18 ou

Essayez de trouver la réponse avant de cliquer Calculer une image Soit g la fonction définie sur [-10 ; 10] par g(x) = x2 + 2x - 6 Calculer l ’ image de -5 par la fonction g. Essayez de trouver la réponse avant de cliquer Calcul de g(-5) : g(x) = x2 + 2x - 5 g(-5) = (-5)2 + 2x(-5) - 6 g(-5) = 25 - 10 - 6 = 9 l ’image de -5 est 9. Réponse: g(-5) = 9 ou

Remplir un tableau de valeurs Soit f la fonction définie sur [-1,2 ; 2,2] par f(x) = x2 - 1. Nous avons calculé précédemment les images de -1,1 ; 0 et 1,3 . On peut présenter ces résultats dans un tableau de valeurs x -1,1 1,3 f(-1,1) = 0,21 f(0) = -1 f(x) 0,21 -1 0,69 f(1,3) = 0,69 Parfois, on écrit « y » à la place de « f(x)

Déterminer graphiquement une image Déterminer graphiquement l ’image de 0,5 par la fonction f. On place 0,5 sur l ’axe des abscisses 0,5 Essayez de trouver la réponse avant de cliquer On recherche l ’ordonnée du point de la courbe qui a pour abscisse 0,5 -0,8 Ici, on trouve -0,8 Réponse: L’ image de 0,5 par f est -0,8

Déterminer graphiquement une image Déterminer graphiquement l ’image de 3 par la fonction f. On place 3 sur l ’axe des abscisses 0,6 Essayez de trouver la réponse avant de cliquer On recherche l ’ordonnée du point de la courbe qui a pour abscisse 3 3 Ici, on trouve 0,6 Réponse: L’ image de 3 par f est 0,6

Déterminer graphiquement une image Déterminer graphiquement l ’image de 2,5 par la fonction f. On place 2,5 sur l ’axe des abscisses 0,5 Essayez de trouver la réponse avant de cliquer On recherche l ’ordonnée du point de la courbe qui a pour abscisse 2,5 2,5 Ici, on trouve 0,5 Réponse: L’ image de 2,5 par f est 0,5

Déterminer graphiquement une image Déterminer graphiquement l ’image de 0 par la fonction f. On place 0 sur l ’axe des abscisses On recherche l ’ordonnée du point de la courbe qui a pour abscisse 0 Essayez de trouver la réponse avant de cliquer -1 Ici, on trouve -1 Réponse: l’ image de 0 par f est -1

Déterminer graphiquement un antécédent Déterminer graphiquement le ou les antécédents éventuels de 1 par la fonction f. D ’abord un peu de syntaxe ... Il se peut que 0,5 ait PLUSIEURS antécédents Il se peut que 0,5 ait un UNIQUE antécédent Il se peut que 0,5 n ’ait AUCUN antécédent

Déterminer graphiquement un antécédent Déterminer graphiquement le ou les antécédents éventuels de 1 par la fonction f. On place 1 sur l ’axe des ordonnées puis ... Essayez de trouver la réponse avant de cliquer On recherche l ’abscisse du point de la courbe qui a pour ordonnée 1 Ici, on trouve -1 Réponse: L’ antécédent de 1 par f est -1

Déterminer graphiquement un antécédent Déterminer graphiquement le ou les antécédents éventuels de 0,5 par la fonction f. On place 0,5 sur l ’axe des ordonnées 0,5 Essayez de trouver la réponse avant de cliquer On recherche la ou les abscisses du ou des points de la courbe qui ont pour ordonnée 0,5 -0,9 2,5 Ici, on trouve -0,9 et 2,5 Réponse: Les antécédents de 0,5 par f sont -0,9 et 2,5

Déterminer graphiquement un antécédent Déterminer graphiquement le ou les antécédents éventuels de -0,5 par la fonction f. On place -0,5 sur l ’axe des ordonnées Essayez de trouver la réponse avant de cliquer -0,5 0,8 On recherche la ou les abscisses du ou des points de la courbe qui ont pour ordonnée -0,5 -0,5 Ici, on trouve -0,5 et 0,8 Réponse: Les antécédents de 0,5 par f sont -0,5 et 0,8

Déterminer graphiquement un antécédent Déterminer graphiquement le ou les antécédents éventuels de 1,5 par la fonction f. On place 1,5 sur l ’axe des ordonnées 1,5 Essayez de trouver la réponse avant de cliquer On recherche l ’abscisse du point de la courbe qui a pour ordonnée 1,5 Il n ’y a aucun point de la courbe qui convienne !!! Réponse: 1,5 n ’a pas d ’antécédent par la fonction f

Déterminer graphiquement un maximum Déterminer graphiquement le maximum de la fonction f. 3 On cherche le point de la courbe le plus « haut » On lit l ’ordonnée de ce point ; c ’est le maximum Essayez de trouver la réponse avant de cliquer Réponse: 3 est le maximum de f On peut préciser: il est atteint pour x = 1

Déterminer graphiquement un maximum Déterminer graphiquement le maximum de la fonction f. On cherche le point de la courbe le plus « haut » 2 On lit l ’ordonnée de ce point ; c ’est le maximum Essayez de trouver la réponse avant de cliquer Réponse: 1 est le maximum de f On peut préciser: il est atteint pour x = 2

Déterminer graphiquement un maximum Déterminer graphiquement le maximum de la fonction g. 3 On cherche le point de la courbe le plus « haut » On lit l ’ordonnée de ce point ; c ’est le maximum Essayez de trouver la réponse avant de cliquer Réponse: 3 est le maximum de g On peut préciser: il est atteint pour x =1

Déterminer graphiquement un minimum Déterminer graphiquement le minimum de la fonction f. On cherche le point de la courbe le plus « bas » -1 On lit l ’ordonnée de ce point ; c ’est le minimum Essayez de trouver la réponse avant de cliquer -1 Réponse: -1 est le minimum de f On peut préciser: il est atteint pour x = -1

Déterminer graphiquement un minimum Déterminer graphiquement le minimum de la fonction f. On cherche le point de la courbe le plus « bas » On lit l ’ordonnée de ce point ; c ’est le minimum Essayez de trouver la réponse avant de cliquer Réponse: -1,2 est le minimum de f On peut préciser: il est atteint pour x = 0

Déterminer graphiquement un minimum Déterminer graphiquement le minimum de la fonction g. On cherche le point de la courbe le plus « bas » -1 On lit l ’ordonnée de ce point ; c ’est le minimum Essayez de trouver la réponse avant de cliquer -1 Réponse: -1 est le minimum de g On peut préciser: il est atteint pour x =1

Déterminer le sens de variation Déterminer quand la fonction f est décroissante. On regarde quand la courbe « descend » puis ... Essayez de trouver la réponse avant de cliquer On donne l ’intervalle ou (les intervalles) des valeurs des abscisses correspondantes -1,2 1 l ’intervalle [-1,2 ; 1] Réponse: La fonction f est décroissante sur l ’ intervalle [ -1,2 ;1 ]

Déterminer le sens de variation Déterminer quand la fonction f est croissante. On regarde quand la courbe « monte » puis ... Essayez de trouver la réponse avant de cliquer On donne l ’intervalle ou (les intervalles) des valeurs des abscisses correspondantes 1 3,2 l ’intervalle [ 1 ; 3,2 ] Réponse: La fonction f est croissante sur l ’ intervalle [1 ; 3,2 ]

Déterminer le sens de variation Déterminer les variations de la fonction f. C ’est déterminer sur quels intervalles la fonction f est décroissante, sur quels intervalles la fonction f est croissante, sur quels intervalles la fonction f est constante. -1,2 1 3,2 Réponse: La fonction f est décroissante sur l ’ intervalle [ -1,2 ;1 ] et La fonction f est croissante sur l ’ intervalle [1 ; 3,2 ]

Déterminer le sens de variation Déterminer les variations de la fonction f. 3,8 On peut réunir ces informations dans un tableau de variation. x -1,2 1 3,2 -1,2 1 3,2 3,8 3,8 -1 f(x) -1

Déterminer le sens de variation Déterminer le sens de variation de la fonction f tracée ci-contre. C ’est déterminer sur quels intervalles la fonction f est décroissante, sur quels intervalles la fonction f est croissante, sur quels intervalles la fonction f est constante. Essayez de trouver la réponse avant de cliquer 3 5 9 11 13 La fonction f est croissante sur les intervalles [ 0 ;3 ] et [ 5 ; 9 ] Réponse: et la fonction f est constante sur l ’ intervalle [ 9 ;11 ] et La fonction f est décroissante sur les intervalles [ 3 ;5 ] et [ 11 ; 13 ]

Déterminer le sens de variation Donner le tableau de variations de la fonction f tracée ci-contre. 9 Essayez de trouver la réponse avant de cliquer 3 x Ici on indique les valeurs des abscisses où les variations changent 0 3 5 9 11 13 2 1 2 9 9 là on indique par des flèches les variations de la fonction 3 5 9 11 13 f(x) 1 3 Enfin les valeurs des ordonnées atteintes par la courbe

Déterminer le sens de variation Déterminer quand la fonction f est décroissante. On regarde quand la courbe « descend » -1 On donne l ’intervalle ou (les intervalles) des valeurs des abscisses correspondantes -3 3 Essayez de trouver la réponse avant de cliquer l ’intervalle [-3;-1] l ’intervalle [1;3] Réponse: La fonction f est décroissante sur les intervalles [ -3 ;-1 ] et [ 1 ; 3 ]

Déterminer le sens de variation Déterminer quand la fonction f est croissante. On regarde quand la courbe « monte » Essayez de trouver la réponse avant de cliquer On donne l ’intervalle ou (les intervalles) des valeurs des abscisses correspondantes -1 l ’intervalle [-1;1] Réponse: La fonction f est croissante sur l ’ intervalle [ -1 ;1 ]

Déterminer le sens de variation Déterminer le sens de variation de f. Essayez de trouver la réponse avant de cliquer -3 -1 3 Réponse: La fonction f est décroissante sur les intervalles [ -3 ;-1 ] et [ 1 ; 3 ] et la fonction f est croissante sur l ’ intervalle [ -1 ;1 ]

Déterminer le sens de variation Donner le tableau de variation de f. Essayez de trouver la réponse avant de cliquer -3 -1 3 x Réponse: -3 -1 1 3 1 3 f(x) 1 -1

Soit la fonction f (x) = x2 + 1 Tracé de la fonction Pour tracer une fonction il faut placer des points dans un repère. Un point est désigné par 2 coordonnées : - une abscisse (horizontale ) représentée par la lettre x - une ordonnée (verticale ) représentée par f(x) ou y

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs Ici on choisit des valeurs de x

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs Ici on choisit des valeurs de x x

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x f(x) Ici on calcule les valeurs de f (x)

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x f(x) -2 -1 -0,5 0,5 1 2 On choisit des valeurs de x faciles

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) On calcule les valeurs de la deuxième ligne

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) On remplace le x par –2 dans la formule

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) f (-2) = (-2)2 + 1 = 5

5 f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) 5 f (-2) = (-2)2 + 1 = 5

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) 5 On remplace x par –1 dans la formule

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) 5 f(-1) = (-1)2 + 1 = 2

2 f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) 5 2 f(-1) = (-1)2 + 1 = 2

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) 5 f(-0,5) = (-0,5)2 + 1 = 1,25

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(-0,5) = (-0,5)2 + 1 = 1,25

f (x) = x2 + 1 pour x entre –2 et 2 Comment déterminer les coordonnées des points ? On complète un tableau de valeurs x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25

Comment tracer la courbe ? f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) Comment tracer la courbe ? On trace un repère On indique l’échelle 1 -0,5 0,5 1 x On place les points

On place ce point de coordonnées -2 et 5 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On place ce point de coordonnées -2 et 5 1 -0,5 0,5 1 x

On place ce point de coordonnées -2 et 5 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On place ce point de coordonnées -2 et 5 1 -2 -0,5 0,5 1 x

On place ce point de coordonnées -2 et 5 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) 5 On place ce point de coordonnées -2 et 5 1 -2 -0,5 0,5 1 x

On place ce point de coordonnées -1 et 2 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On place ce point de coordonnées -1 et 2 1 -0,5 0,5 1 x

On place ce point de coordonnées -1 et 2 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On place ce point de coordonnées -1 et 2 1 -1 -0,5 0,5 1 x

On place ce point de coordonnées -1 et 2 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On place ce point de coordonnées -1 et 2 2 1 -1 -0,5 0,5 1 x

On place ce point de coordonnées –0,5 et 1,25 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On place ce point de coordonnées –0,5 et 1,25 1 -0,5 0,5 1 x

On place ce point de coordonnées –0,5 et 1,25 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On place ce point de coordonnées –0,5 et 1,25 1 -0,5 0,5 1 x

On place ce point de coordonnées –0,5 et 1,25 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On place ce point de coordonnées –0,5 et 1,25 1,25 1 -0,5 0,5 1 x

On fait cela pour tous les points 1 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On fait cela pour tous les points 1 0,5 1 x

On fait cela pour tous les points 1 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On fait cela pour tous les points 1 0,5 1 x

On fait cela pour tous les points 1 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On fait cela pour tous les points 1 0,5 1 x

On fait cela pour tous les points 1 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On fait cela pour tous les points 1 0,5 1 x

On relie les points à la main 1 f (x) = x2 + 1 x -2 -1 -0,5 0,5 1 2 f(x) 5 1,25 f(x) On relie les points à la main 1 0,5 1 x

Résolution d’équations de type f(x) = m

Placer le nombre m sur l’axe des ordonnées

Placer le nombre m sur l’axe des ordonnées

Tracer la droite d’équation y = m

Tracer la droite d’équation y = m

Chercher les points d’intersection de la droite avec la représentation graphique de la fonction f 

Chercher les points d’intersection de la droite avec la représentation graphique de la fonction f 

Les solutions de l’équation sont les abscisses de ces points

Les solutions de l’équation sont les abscisses de ces points f(x) = m, a donc graphiquement trois solutions