La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Notations et raisonnements mathématiques Quelques extraits des documents ressource.

Présentations similaires


Présentation au sujet: "Notations et raisonnements mathématiques Quelques extraits des documents ressource."— Transcription de la présentation:

1 Notations et raisonnements mathématiques Quelques extraits des documents ressource

2 « Tout exposé de logique mathématique est exclu »

3 « Sur les différents types de raisonnement, voir le document ressource du collège »

4 « La langue naturelle et le langage symbolique doivent coexister toute lannée »

5 « « on ne peut pas savoir » est peu rencontré en mathématiques, sauf dans les exercices de « vrai-faux » »

6 « Il peut être intéressant de comparer avec largumentation en français »

7 « Lévaluation peut être faite à loral », « on peut envisager une valorisation sous forme de bonus »

8 Extraits du document ressource du collège

9 Compétences liées à la résolution de problèmes « La résolution de problèmes, en mathématiques, recouvre plusieurs activités qui, toutes, sappuient sur le raisonnement de lélève. Ces activités, parfois successives mais souvent imbriquées, peuvent se décliner en compétences : lire, interpréter et organiser linformation ; sengager dans une démarche de recherche et dinvestigation ; mettre en relation les connaissances acquises, les techniques et les outils adéquats pour produire une preuve ; communiquer par des moyens variés et adaptés-aptes à convaincre-la solution du problème »

10 Distinction de 2 étapes: - Recherche et production dune - Mise en forme de la preuve On « distingue le raisonnement-constitué de la recherche, de la découverte et de la production dune preuve- de la démonstration formalisée qui est le forme aboutie-structurée sous forme déductive et rédigée- de ce raisonnement. »

11 « raisonner en mathématiques, ce nest pas seulement pratiquer le raisonnement déductif un raisonnement déductif peut-être considéré comme complet même sil na pas une mise en forme canonique »

12 Raisonnement inductif et déductif « On peut distinguer, dans le domaine scientifique, deux types de raisonnement : le raisonnement par induction et présomption : de létude de plusieurs exemples concordants (et si possible représentatifs) on déduit, par présomption, une propriété générale ; le raisonnement par déduction : à partir de propriétés reconnues comme vraies, par enchaînement logique, on déduit une propriété

13 Dans le domaine des sciences expérimentales, le raisonnement par induction se suffit à lui-même. En mathématiques, le raisonnement inductif ne se conçoit, en général, que comme une première étape, conduisant à une conjecture. Alors que le raisonnement déductif fonctionne selon le schéma classique : « Sachant que (A est vraie) et que (A implique B), je déduis que (B est vraie) », le raisonnement inductif fonctionne selon le schéma présomptif : « Constatant que dans les exemples où (A est vraie), alors (B est vraie), je présume que (A implique B) est vraie » ou le schéma explicatif : Sachant (que A implique B) est vraie, jexplique que (B est vraie) en présumant que (A est vraie)

14 Le raisonnement inductif prend toute sa place en mathématiques dans la phase de recherche, en particulier sous forme du schéma explicatif dans le raisonnement par chaînage arrière essentiel en géométrie. Dans la phase de recherche, cela conduirait à se poser la question de ce quil suffirait davoir pour emporter la conclusion.

15 Et à propos des autres disciplines : En français : « Le travail conduit en collège porte principalement sur laspect persuasif de largumentation, sans exclure totalement laspect convaincant. Il faut attendre la classe de seconde pour que soit développée la capacité à rédiger des textes argumentatifs fondés sur des raisonnements déductifs et que les élèves distinguent démontrer et argumenter dune part, convaincre et persuader dautre part, qui constituent les principales opérations de largumentation. » En géographie : « létude de situations particulières ou spécifiques pour ensuite dégager par une démarche inductive des savoirs dordre général. La géographie sollicite largement lanalogie pour dégager des similitudes mais aussi des oppositions de situations. »

16 A propos de lévaluation « On valorise les écrits intermédiaires » raisonnement exact mais résultat final erroné, ébauche de raisonnement avec texte, figure codée ou schéma, présence explicite de pistes de résolution mais travail non abouti »

17 Notations et raisonnements mathématiques Quelques exemples dactivités

18 Raisonnements par labsurde

19 Extrait du doc ressource: Les nombres et sont-ils égaux ?

20 Raisonnements par disjonction de cas

21 Résoudre dans léquation: Si x = 0…. Si x 0….

22 Infirmation par production dun contre-exemple (dans un vrai/faux avec quantificateurs implicites) Deux rectangles de même périmètre ont aussi la même aire Deux rectangles de même aire ont aussi le même périmètre (3x + 2y)² = 9x² + 4y² Les parallélogrammes dont les diagonales ont la même longueur sont des losanges Si trois points M, A et B sont tels que MA = MB, alors M est le milieu de [AB] Si a² = b² alors a = b Si ax = ay alors x = y

23 De la nécessité de quantifier… cf exercice 4 p 4 du document ressource « Si laire dun carré est supérieure à 1, alors son côté est supérieur à 1 » « Si un point de la parabole déquation y = x² a une ordonnée supérieure à 1, alors son abscisse est supérieure à 1 » « Si alors »

24 Une activité conçue à partir des exemples des documents ressource « Comprendre ce quest une équation de courbe »


Télécharger ppt "Notations et raisonnements mathématiques Quelques extraits des documents ressource."

Présentations similaires


Annonces Google