La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

1 Comparaison dune moyenne observée à une moyenne théorique Situation du problème –Les variables quantitatives Peuvent être transformées en variables qualitatives.

Présentations similaires


Présentation au sujet: "1 Comparaison dune moyenne observée à une moyenne théorique Situation du problème –Les variables quantitatives Peuvent être transformées en variables qualitatives."— Transcription de la présentation:

1 1 Comparaison dune moyenne observée à une moyenne théorique Situation du problème –Les variables quantitatives Peuvent être transformées en variables qualitatives (on peut sintéresser au pourcentage dhypertendus plutôt quà la valeur de la tension artérielle) et lon peut alors réaliser des comparaisons de fréquences et se ramener aux cas précédents. Mais il y a alors perte dinformation donc de puissance. Elles peuvent aussi être considérées en tant que telles. On peut alors calculer les paramètres de la distribution : moyenne, écart type, estimateur de lécart type de la population, estimateur de lécart type de la moyenne (ESM), paramètres de symétrie et daplatissement. Le problème évoqué ici est de comparer une moyenne observée à une moyenne théorique (conformité). Par exemple, lors de la fabrication de comprimés de valium© à 5mg on veut vérifier que la production est bien conforme à cette norme.

2 2 Hypothèses Hypothèses : –Hypothèse nulle (H0) : La moyenne observée x est un estimateur de la moyenne µo. m est la moyenne théorique µo = m –Hypothèse alternative Test unilatéral : –µo # m Test unilatéral –µo > m ou (exclusif) µo < m Fluctuations déchantillon –Si H0 est vraie la quantité : Suit une loi de normale si la distribution de la variable suit une loi normale (condition remplie quand N > 30). u = | x - m | N 2

3 3 En pratique Suite: –En pratique, on ne connaît pas 2 On estime la variance à partir de la variance de léchantillon 2 = x 2 - N N - 1 ) 2 ( On montre que t = | x - m | 2 suit une loi de Student à N-1 DDL u = | x - m | N 2 suit une loi normale centrée réduite, Y = (n-1)* 2 2 suit une loi du Khi 2 à N-1 DDL Il sen suit que t = u Y N-1 N | x - m | 2 =par définition suit une loi de Student N x

4 4 Statistique t de Student Statistique : –t de Student Condition dapplication : –Si N < 30 : Normalité de la distribution (cf paramètres de symétrie et d'aplatissement) Données nécessaires : –Moyenne théorique m, moyenne observée x –Estimateur de lécart type –Effectif de léchantillon N t = | x - m | N 2 Décision : t > t alpha lu dans la table : on rejette H0. Il y a une différence significative. On recherche dans la table le degré de signification p. Remarque : Pour décider, on aurait pu calculer p et comparer p au risque alpha retenu. Si p

5 5 Exemple Exemple : –On tire au sort un échantillon de 100 comprimés de valium dun lot de fabrication qui doit fournir des comprimés dosés à 5mg. On obtient les résultats suivants : Total des valeurs T= 495, Total des carrés des valeurs U = La fabrication peut-elle être considérée comme conforme au dosage prévu ? (on prend alpha = 5%) –H0 : La fabrication est conforme. x = 4, = = 0,5025 t = 0, ,95 = 0,70 DDL = 99 t alpha 5% = 1,96 Le t est inférieur au t alpha 5%, je ne peux pas rejeter H0. La fabrication peut être considérée comme conforme. Mais attention au risque Bêta. Remarque : t est le rapport entre lécart des moyennes et lESM.

6 6 Carte de contrôle Utilisation dans les approches qualités –Dans les démarches de qualité, on est amené, par exemple, à vérifier la conformité des lots à une valeur théorique. La méthode consiste à comparer la moyenne des valeurs observées sur un échantillon, de même effectif, prélevé régulièrement (1 fois heure par exemple) à une valeur théorique. –Pour ce faire, on détermine la différence minimale d qui amène à rejeter lhypothèse nulle de conformité de la moyenne observée à la moyenne théorique. –On détermine les bornes m+d et m-d, puis on trace un diagramme avec en abscisse les différents échantillons et en ordonnées les lignes horizontales correspondant à la borne inférieure, la moyenne théorique, la borne supérieure et la ligne brisée reliant les différentes moyennes observées. Tous les points à lextérieur des bornes différent significativement au seuil de risque alpha de la moyenne théorique.

7 7 Exemple Exemple : Dans une production de médicaments, la valeur théorique de la concentration de principe actif doit être de 12mg. Lécart type de la population est de 1 mg. On réalise tous les jours un échantillon de 100 comprimés destiné au suivi de la qualité. => Pour alpha = 5%, d = 2 * 0,1 Sur 15 jours on a les résultats suivants : Sur les 15 jours un seul point est (j5) hors limite.


Télécharger ppt "1 Comparaison dune moyenne observée à une moyenne théorique Situation du problème –Les variables quantitatives Peuvent être transformées en variables qualitatives."

Présentations similaires


Annonces Google