La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

1 APPLICATION DE LA MECANIQUE DE LA RUPTURE AU MATERIAU BOIS.

Présentations similaires


Présentation au sujet: "1 APPLICATION DE LA MECANIQUE DE LA RUPTURE AU MATERIAU BOIS."— Transcription de la présentation:

1 1 APPLICATION DE LA MECANIQUE DE LA RUPTURE AU MATERIAU BOIS

2 2 4.1.INTRODUCTION Conditions de l'amorçage d'une rupture taille du défaut niveau de contrainte ténacité du bois La mécanique de la rupture donne des relations quantitatives entre ces trois grandeurs outil pour la sélection du bois à utiliser, pour la définition de sa qualité, pour le calcul des contraintes admissibles.

3 3 4.2) CRITERES DE RUPTURE SELON LA MECANIQUE LINEAIRE DE LA RUPTURE Généralités sur les critères de rupture A l'extrémité d'un défaut du bois règne des contraintes locales très importantes qui vont servir à amorcer la rupture en cet endroit précis. critère de rupture la contrainte locale dépasse la résistance ultime du matériau et ce sur la distance caractéristique Cette approche simple que l'on appelle approche locale de la rupture se heurte à deux difficultés :

4 ) GENERALITES SUR LES CRITERES DE RUPTURE APPROCHE LOCALE Cette approche simple que l'on appelle approche locale de la rupture se heurte à deux difficultés. La première est la détermination de la résistance ultime microscopique qui intègre les liaisons entre les fibres, l'influence de l'hétérogénéité, des défauts, de la variabilité etc.. La seconde est la définition de la distance caractéristique qui dans certains cas peut s'identifier aisément au diamètre d'une fibre mais celle-ci est plus difficile à préciser. 4.2) CRITERES DE RUPTURE SELON LA MECANIQUE LINEAIRE DE LA RUPTURE

5 5 APPROCHE GLOBALE Pour surmonter ces difficultés, on préfère généralement définir "une résistance" du matériau à la rupture. Cette approche dénommée approche globale nécessite la connaissance de la loi de comportement du bois, qui peut être considérée pour les cas de siccité habituelle, comme élastique orthotrope. L'hypothèse de l'élasticité linéaire ne nécessite pas d'introduire un critère de déformation critique car celle-ci sera reliée à la contrainte critique par l'intermédiaire de la loi de Hooke ) GENERALITES SUR LES CRITERES DE RUPTURE

6 6 CRITERES DE RUPTURE UTILISES POUR LE BOIS Approches globales le facteur d'intensité de contraintes critique K 1c, le taux d'énergie disponible critique G 1c, la ténacité J 1c. Approches locales La contrainte locale critique * c le facteur de densité d'énergie critique S c ) GENERALITES SUR LES CRITERES DE RUPTURE

7 ) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE Le facteur d'intensité de contraintes K caractérise la distribution des contraintes à l'extrémité d'une fente selon la relation 4.2) CRITERES DE RUPTURE SELON LA MECANIQUE LINEAIRE DE LA RUPTURE Cette distribution de contrainte présente une singularité fonction de la racine carrée de la distance. Elle dépend du degré d'orthotropie du bois et de l'angle polaire par l'intermédiaire de la fonction f ij ( ).

8 8 RELATION FACTEUR DINTENSITE DE CONTRAINTES ET EFFORTS EXTERIEURS mode I, g contrainte globale appliquée mode II, g scission globale appliquée mode III, g scission globale appliquée ) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE : Le facteur d'intensité de contraintes est relié aux contraintes globales dans le cas d'une planche de grandes dimensions par les relations : a longueur de la gerce

9 9 Dans le cas d'une structure ou d'une plaque de dimensions finies, il faut faire intervenir un coefficient de correction de géométrie F (a/W) ) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE CAS DUNE STRUCTURE DE DIMENSIONS FINIES Plaque à fissure centrale Plaques avec des fissures multiples alignées

10 10 CAS DUNE STRUCTURE DE DIMENSIONS FINIES ) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE Plaques avec des fissures multiples parallèles n#. a : distance entre les fissures Eprouvette SENT Eprouvette SENT

11 11 CRITERE DE RUPTURE Au moment de la rupture le facteur d'intensité de contraintes atteint une valeur seuil appelée ténacité du bois 4.2.2) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE cas où les modes I et II coexistent simultanément, la courbe intrinsèque de rupture peut être définie dans le plan (K I /K Ic ; K II /K Ic ) par l'équation : m° et n° sont des exposants Wu m° = 1,03, n° = 1,88 (balsa) Leicester m° = 1, n °= 2 Leicester m° = 1, n° = 1

12 12 Domaine de Validité Le concept de facteur d'intensité de contraintes critique s'applique au cas d'un matériau dont le comportement est linéaire élastique. cas du bois sec (taux d'humidité inférieur à %) qui ne présente une courbe charge-déplacement possédant un faible écart par rapport à la linéarité pour des charges supérieures % de la charge critique. Pour des bois plus humides, cet écart est beaucoup plus important. Pour calculer le facteur d'intensité de contraintes critique, une correction est alors nécessaire ) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE

13 13 CORRECTION DE NON LINEARITE DES DIAGRAMMES CHARGE-DEPLACEMENT On corrige la charge critique par une méthode d'énergie équivalente de rupture l'aire sous la courbe charge déplacement d'un bois humide calculée jusque la charge maximale Pmax, est considérée comme égale à celle sous la courbe charge déplacement [linéaire] jusque'à P* c (où P* c est la charge critique corrigée). Cette charge critique corrigée est alors introduite dans la formule permettant de calculer le facteur d'intensité de contraintes critiques équivalent ) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE

14 14 CORRECTION DE NON LINEARITE DES DIAGRAMMES CHARGE-DEPLACEMENT ) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE C

15 15 CORRECTION DE NON LINEARITE DES DIAGRAMMES CHARGE-DEPLACEMENT Cette méthode conduit à obtenir une charge critique corrigée supérieure à la charge de rupture. Une validation de cette méthode consiste à vérifier l'indépendance de la ténacité K 1c vis à vis de la taille du défaut 4.2.2) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE

16 16 INFLUENCE DE LA TAILLE DU DEFAUT 4.2.2) DEFINITION DU FACTEUR D'INTENSITE DE CONTRAINTES CRITIQUE

17 ) CRITERES DE RUPTURE ENERGETIQUES GLOBAUX Une façon simple d'aborder le problème des critères de rupture consiste à faire un bilan énergétique entre la densité volumique d'énergie apportée par le chargement d'un corps fissuré, l'énergie de déformation stockée W*, l'énergie cinétique du système (la densité volumique d'énergie) et l'énergie de rupture par unité de surface. Cette méthode fut initialement introduite par Griffith. Nous plaçons dans le cadre de la thermodynamique des processus réversibles, et si da est l'incrément d'accroissement de la longueur de fissure

18 18 TAUX DENERGIE DISPONIBLE Dans le cas où l'on ne s'intéresse qu'à l'amorçage du processus de rupture, l'énergie cinétique K cin est nulle et on calcule alors le taux d'énergie disponible G par la relation : On définit alors le critère de rupture en terme de taux d'énergie disponible critique G 1c (dans le cas du mode I) : s est l'énergie surfacique de rupture, le coefficient 2 s'introduit en raison de la création de deux nouvelles surfaces lorque la fissure s'accroît 4.2.3) CRITERES DE RUPTURE ENERGETIQUES GLOBAUX

19 ) DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE si l'on fait l'hypothèse d'un système de chargement infiniment mou ou infiniment rigide, la rupture se fait à chargement ou à déplacement imposé.la variation d'énergie potentielle d est nulle de sorte que Cette relation montre que le taux d'énergie disponible n'est autre que la variation d'énergie de déformation stockée pour deux longueurs de fissures (a et a+ da). Elle est représentée par l'aire hachurée sur la figure.

20 20 REPRESENTATION GRAPHIQUE ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

21 21 RELATION TAUX D'ENERGIE DISPONIBLE-COMPLAISANCE Dans l'hypothèse où le corps fissuré a un comportement linéaire élastique, le déplacement des points d'application de la charge d est proportionnel à la charge appliquée d = C. P C est appelée la complaisance de l'éprouvette. L'énergie de déformation stockée U par unité de longueur est égale à U = W*.dV = W*.B.1 U = 1/2 P.d = 1/2 P 2.C ) DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

22 22 VARIATION de dC/da La détermination de la variation de dC/da donc du taux d'énergie disponible se fera simplement si on connaît la variation de la complaisance C = f (a) en fonction de la longueur de fissure. Celle-ci peut être obtenue expérimentalement ou analytiquement en faisant des hypothèses sur le mécanisme de déformation de l'éprouvette fissurée. Les points expérimentaux des valeurs de la complaisance pour une longueur de fissure donnée sont généralement utilisés pour lisser une courbe C = f (a) de type exponentielle : C = A 5. exp (A 6.a) A 5 et A 6 sont des constantes ) DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

23 23 TAUX D'ENERGIE DISPONIBLE CRITIQUE On obtient dans les conditions critiques (P = P c ) : ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE Il existe plusieurs solutions analytiques pour représenter l'évolution de la complaisance en fonction de la longueur du défaut. Ces solutions dépendent de la géométrie de l'éprouvette utilisée et des hypothèses sur le déplacement des lèvres de l'entaille.

24 24 EVOLUTION DE LA COMPLAISANCE EN FONCTION DE LA LONGUEUR DENTAILLE ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

25 25 POUTRE DCB L'éprouvette DCB (Double Cantilever Beam) de hauteur h et d'épaisseur B étant largement utilisée pour la détermination de la ténacité G1c du bois. On trouve plusieurs solutions pour cette géométrie dont quatre sont reportées la diapo suivante ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

26 26 FORMULES DE DETERMINATION DE G IC POUR UNE POUTRE DCB Méthode de la norme ASTM D Modèle de la double poutre encastrée ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

27 27 FORMULES DE DETERMINATION DE G IC POUR UNE POUTRE DCB Modèle de la double poutre sur fondations élastiques Modèle d'OKIHIRA ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

28 28 FORMULES DE DETERMINATION DE G IC POUR UNE POUTRE DCB Les formulations analytiques donnent en général des valeurs éloignées de la méthode expérimentale qui reste la procédure recommandée. Ces divergences s'expliquent par le fait que l'évolution de la complaisance en fonction de la longueur du défaut ne suit que très imparfaitement les formulations analytiques et que ce phénomène dépend de l'essence étudié ) DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

29 29 EXEMPLE DEVOLUTION DE LA COMPLAISANCE AVEC LA LONGUEUR DENTAILLE ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

30 30 EXEMPLE DEVOLUTION DE LA COMPLAISANCE AVEC LA LONGUEUR DENTAILLE ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

31 31 FORMULATIONS DE LA TENACITE POUR D'AUTRES GEOMETRIES D'EPROUVETTES Eprouvette de cisaillement compacte Eprouvette de flexion ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

32 32 FORMULATIONS DE LA TENACITE POUR D'AUTRES GEOMETRIES D'EPROUVETTES Eprouvette de mode III I moment d'inertie ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

33 33 RELATION ENTRE LE TAUX DENERGIE DISPONIBLE ET LE FACTEUR DINTENSITE DE CONTRAINTES Le taux d'énergie disponible critique et le facteur d'intensité de contraintes critique, dans l'hypothèse d'un comportement linéaire élastique sont liés entre eux. La relation entre ces deux quantités est obtenue en utilisant une méthode de régression de fissure. Mode I )DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE

34 34 RELATION ENTRE LE TAUX DENERGIE DISPONIBLE ET LE FACTEUR DINTENSITE DE CONTRAINTES ).DETERMINATION DU TAUX D'ENERGIE DISPONIBLE CRITIQUE mode II mode III

35 ) LA TENACITE J 1C Lorsque le matériau bois cesse d'avoir un comportement linéaire élastique, c'est-à-dire lorsque le taux d'humidité augmente, la mécanique linéaire des ruptures cesse d'être utilisable. On peut toutefois continuer à faire un bilan énergétique entre le travail des forces extérieures et la variation d'énergie dissipée par incrément d'accroissement de longueur de fissure.

36 36 FORMALISME DE LINTEGRALE J Rice en 1968 a démontré que ce bilan pouvait s'écrire sous la forme d'une intégrale de contour qu'il a appelé l'intégrale J et qui se présente sous la forme : W* est la densité d'énergie de déformation, n x la normale orientée dans la direction x, v le déplacement suivant y ) La ténacité J 1c

37 37 Cette intégrale s'obtient par intégration le long d'un contour S entourant la pointe de la fissure On peut montrer que l'intégrale J a trois propriétés essentielles 1) Elle est indépendante du contour d'intégration. 2) Elle caractérise le champs de contraintes et des déformations. 3)Elle est reliée à la variation d'énergie potentielle par la relation (à déplacement constant ou à charge constante). PROPRIETES DE LINTEGRALE J U travail dépensé ) La ténacité J 1c J = - U/ a P J = U/ a d

38 38 CONTOURS DINTEGRATION DE LINTEGRALE J ) La ténacité J 1c

39 39 METHODE EXPERIMENTALE DE DETERMINATION DE LINTEGRALE J La méthode expérimentale de détermination de l'intégrale J consiste à mesurer les énergies dissipées U à partir des courbes charge-déplacement et ce pour plusieurs longueurs de fissures à déplacement imposé. En différenciant la courbe U = f (a) pour diverses valeurs du déplacement, on obtient la courbe J = f (d) ) La ténacité J 1c

40 40 METHODE EXPERIMENTALE DE DETERMINATION DE LINTEGRALE J ) La ténacité J 1c

41 41 TENACITE J IC Rice a proposé comme critère de rupture la valeur seuil de l'intégrale J appelée ténacité J 1c : J = J 1c Ce dernier peut être obtenue sur la courbe J = f(d) par la connaissance du déplacement critique d c. Celui-ci peut être déterminé sur la courbe charge- déplacement soit par la présence d'un décrochement soit en s'aidant d'une méthode physique (émission accoustique par exemple). Dans le cas d'un matériau dont le comportement est linéaire élastique,l'intégrale J est simplement égale au taux d'énergie disponible G ) La ténacité J 1c

42 42 TENACITE J IC ) La ténacité J 1c

43 43 TENACITE J IC ténacité J 1c d'un pin sylvestre prélèvement TL J 1c = 310 J/m2 prélèvement RL. J 1c = 420 J/m ) La ténacité J 1c

44 ) CRITERES LOCAUX DE RUPTURE Les critères locaux ont une signification physique plus importante que les critères globaux qui considèrent le matériau comme une boite noire. Les défauts du bois entrainent la présence à leurs extrémités de très grandes contraintes locales. Physiquement, celles-ci ne peuvent exister car la contrainte ne pourra dépasser la résistance ultime locale * c du matériau et le gradient de contrainte disparaitra sur la distance où règnent ces contraintes supérieures à * c

45 45 DISTANCE CARACTERISTIQUE Cette distance est appelée aussi distance critique et dénommée X c. Elle peut avoir une signification physique en relation avec la nature fibreuse du bois ; c'est ainsi que le diamètre moyen des fibres peut être considéré comme une bonne valeur de cette distance critique ) CRITERES LOCAUX DE RUPTURE

46 46 INTERET DES CRITERES DE RUPTURE LOCAUX Ils nécessitent par contre la connaissance la plus exacte possible du champs de contraintes à la pointe du défaut et ce généralement à l'aide de la méthode des éléments finis ; enfin la détermination de la résistance locale ultime est relativement délicate. L'intérêt des critères locaux est de permettre de s'affranchir de l'influence de la géométrie et du mode de chargement de la structure sur la détermination de la ténacité du matériau, influence qui apparait notablement sur les critères de mécanique non linéaire des ruptures comme la ténacité J 1c ) CRITERES LOCAUX DE RUPTURE

47 47 SCHEMA DE PRINCIPE 4.2.4) CRITERES LOCAUX DE RUPTURE

48 ) CRITERE DE LA CONTRAINTE LOCALE CRITIQUE Dans cette méthode, on fait simplement l'hypothèse que lorsque la contrainte dépasse localement la valeur de la contrainte ultime macroscopique du matériau sur la distance caractéristique, la rupture intervient. cas d'un noeud Si l'on fait l'hypothèse que le gradient de contrainte à l'extrémité du noeud est gouverné par un facteur d'intensité de contraintes, la ténacité K 1c du bois peut s'écrire :

49 49 CAS DUN NŒUD le facteur d'intensité de contraintes d'une petite fissure de longueur X c émanant d'un trou de diamètre d t est donné par la formule : Au moment de la rupture Remarquons que dans cette approche, le noeud a été assimilé à un trou de diamètre d t comportant une fibre rompue à son extrémité de diamètre X c ) CRITERE DE LA CONTRAINTE LOCALE CRITIQUE

50 50 CAS DUN NŒUD ) CRITERE DE LA CONTRAINTE LOCALE CRITIQUE

51 51 CAS DUN NŒUD Cette équation montre que le rapport ul / g c croit avec la racine carrée du diamètre du noeud ; La pente de la courbe permet de déterminer la valeur de Xc qui est relativement proche du diamètre moyen des fibres ) CRITERE DE LA CONTRAINTE LOCALE CRITIQUE

52 52 VERIFICATION SUR LE PIN SYLVESTRE ) CRITERE DE LA CONTRAINTE LOCALE CRITIQUE

53 ) FACTEUR DE DENSITE D'ENERGIE ELASTIQUE CRITIQUE Ce critère a été introduit par Sih Il suppose qu'au moment de la rupture, la densité d'énergie de déformation à la distance X c atteint sa valeur critique et que la fissure se propagera dans la direction où cette densité d'énergie de déformation est minimale. Ce critère de rupture a un caractère vectoriel car il fixe à la fois la valeur de la ténacité requise mais aussi la direction d'extension de la fissure. Dans le cas d'un problème plan et d'un matériau linéaire élastique, la densité d'énergie de déformation est égale à :

54 54 DENSITE DENERGIE DE DEFORMATION ELASTIQUE EN TETE DE FISSURE Dans le cas d'une sollicitation polymodale, la densité d'énergie de déformation est reliée aux facteurs d'intensité de contraintes par Les quantités A ij (i, j = 1,2) sont fonctions des complaisances élastiques S ij et de l'angle polaire ) FACTEUR DE DENSITE D'ENERGIE ELASTIQUE CRITIQUE

55 55 DENSITE DENERGIE DE DEFORMATION ELASTIQUE EN TETE DE FISSURE ) FACTEUR DE DENSITE D'ENERGIE ELASTIQUE CRITIQUE valeurs des constantes D 1, D 2, D 3 et D 4 1 et 2 sont les solutions de l'équation caractéristique avec k = 1,2

56 56 CRITERE DE RUPTURE Dans les conditions critiques : S c est le facteur de densité d'énergie de déformation critique ) FACTEUR DE DENSITE D'ENERGIE ELASTIQUE CRITIQUE La densité d'énergie de déformation W* c s'exprime en fonction du facteur de densité d'énergie S

57 57 VALEUR DE S c POUR LE PIN SYLVESTRE ) FACTEUR DE DENSITE D'ENERGIE ELASTIQUE CRITIQUE

58 METHODES EXPERIMENTALES DE LA DETERMINATION DE LA TENACITE DU BOIS Principe de la méthode La ténacité du bois se mesure généralement à partir de l'évaluation du taux d'énergie disponible pour un déplacement ou une charge critique. Le problème se ramène alors à la détermination de l'énergie de rupture de plusieurs éprouvettes possédant des longueurs d'entailles différentes. Cette énergie de rupture n'est rien d'autre que l'aire sous la courbe charge-déplacement

59 59 PRINCIPE La détermination expérimentale de la ténacité K Ic du bois est théoriquement possible avec une seule éprouvette et la connaissance de sa charge critique ; toutefois la variabilité naturelle au bois conduit à réaliser plusieurs essais. En outre, il est nécessaire de connaître avec suffisamment de confiance, l'évolution de la complaisance de l'éprouvette utilisée avec la longueur de fissure, fonction qui obtient aisément à partir des diverses courbes charge-déplacement quand on utilise une méthode nécessitant plusieurs éprouvettes. Pour ces raisons, la méthode dite de la complaisance utilisant une douzaine d'éprouvettes de longueur d'entailles différentes est communément utilisée. 4.3).METHODES EXPERIMENTALES DE LA DETERMINATION DE LA TENACITE DU BOIS

60 60 EVOLUTION DE LA COMPLAISANCE L'ensemble des courbes charges-déplacements fournit plusieurs valeurs de la complaisance C i (a i /W) définie par la pente de la courbe charge-déplacement. C = d/P Les points expérimentaux sont lissés à partir d'une courbe exponentielle du type : C = A 5. exp (A 6. a) où A 5 et A 6 sont des constantes 4.3).METHODES EXPERIMENTALES DE LA DETERMINATION DE LA TENACITE DU BOIS

61 61 EVOLUTION DE LA COMPLAISANCE AVEC LA LONGUEUR D'ENTAILLE 4.3).METHODES EXPERIMENTALES DE LA DETERMINATION DE LA TENACITE DU BOIS

62 62 EXPRESSION DE LA TENACITE La fonction C = f(a) est alors dérivée par rapport à la longueur de fissure. dC/da = A 5 A 6 exp (A 6.a) Cette expression est alors reportée dans la formule : G 1c = (P c 2 /2B). dC/da 4.3).METHODES EXPERIMENTALES DE LA DETERMINATION DE LA TENACITE DU BOIS

63 Types d'éprouvettes utilisées Les éprouvettes utilisées pour la détermination de la ténacité sont généralement des éprouvettes DCB (Double Cantilever Beam). Cette éprouvette présente des risques d'instabilité transversale dans le cas de mesures sur des matériaux isotropes qui disparaissent dans le cas du bois car la propagation est guidée par le fil du bois sans la nécessité de rainures En outre, elle possède un ligament important ce qui permet d'obtenir la courbe de complaisance et la courbe charge-déplacement pour plusieurs longueurs de fissures à l'aide de chargements et déchargements successifs. Pour cela, on utilise le fait que la propagation de la fissure s'arrête naturellement. rapidement après quelque millimètres de propagation

64 64 EPROUVETTE DCB 4.3).METHODES EXPERIMENTALES DE LA DETERMINATION DE LA TENACITE DU BOIS

65 65 AUTRES EPROUVETTES mode I l 'éprouvette SENT (Single Edge Notch Tensile), l' éprouvette à entaille centrale, l' éprouvette de double torsion, l 'éprouvette cantilever trapézoïdale. 4.3).METHODES EXPERIMENTALES DE LA DETERMINATION DE LA TENACITE DU BOIS

66 66 mode I 4.3).METHODES EXPERIMENTALES DE LA DETERMINATION DE LA TENACITE DU BOIS

67 67 mode I 4.3).METHODES EXPERIMENTALES DELA DETERMINATION DE LA TENACITE DU BOIS

68 68 mode II 4.3).METHODES EXPERIMENTALES DE LA DETERMINATION DE LA TENACITE DU BOIS

69 Détermination de la charge critique Plusieurs méthodes sont utilisées pour déterminer la charge critique. Généralement, le début de la non-linéarité sur la courbe charge- déplacement est considéré comme le point d'amorçage de la rupture car il marque le début de l'endommagement du matériau, endommagement caractérisé par des fissurations des fibres ou des délaminations entre fibres. On peut s'aider pour la détection de l'amorçage, de méthodes visuelles (caméra rapide), de l'émission acoustique d'une méthode électrique. Celle-ci consiste à déposer une couche de carbone par pulvérisation dans la zone proche de l'entaille. Un courant d'intensité constante traverse cette fine couche.

70 PARAMETRES INFLUENCANT LA TENACITE DU BOIS : La ténacité ou résistance à la rupture du bois est une caractéristique mécanique intrinsèque de matériau. influencée par : –la température, –le taux d'humidité, –la vitesse de déformation. Relation G Ic et K Ic

71 71 INFLUENCE DE LA LONGUEUR DENTAILLE 4.4). PARAMETRES INFLUENCANT LA TENACITE DU BOIS

72 72 INFLUENCE DE LEPAISSEUR 4.4). PARAMETRES INFLUENCANT LA TENACITE DU BOIS

73 73 INFLUENCE DE LESPECE Ténacité (MPa¦m) sens TL 4.4). PARAMETRES INFLUENCANT LA TENACITE DU BOIS

74 74 INFLUENCE DE LA DENSITE k et n des constantes du matériau. 4.4 ) PARAMETRES INFLUENCANT LA TENACITE DU BOIS

75 75 INFLUENCE DU TAUX DHUMIDITE L'influence du taux d'humidité sur la ténacité du bois est similaire à celle que ce paramètre a sur les autres caractéristiques mécaniques du bois. La résistance à la rupture décroît lorsque le taux d'humidité augmente pour atteindre une valeur asymptotique vers 30 % d'humidité, taux qui correspond au point de saturation des fibres. Cette décroissance est notable puisque les ténacités maximales (10-12 % d'humidité) et minimales (30 % et au delà) sont dans le rapport 6 à 1. Pour des bois très secs (taux d'humidité inférieur à 10 %), la diminution de ténacité peut s'expliquer par la présence de microfissures générées durant le séchage. 4.4) PARAMETRES INFLUENCANT LA TENACITE DU BOIS

76 76 INFLUENCE DE LA TEMPERATURE l'abaissement de la température rend le bois plus fragile ) PARAMETRES INFLUENCANT LA TENACITE DU BOIS Hetre

77 77 INFLUENCE DE LA VITESSE DE CHARGEMENT 4.4) PARAMETRES INFLUENCANT LA TENACITE DU BOIS


Télécharger ppt "1 APPLICATION DE LA MECANIQUE DE LA RUPTURE AU MATERIAU BOIS."

Présentations similaires


Annonces Google