La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

ACT2025 - Cours 8 MATHÉMATIQUES FINANCIÈRES I Huitième cours.

Présentations similaires


Présentation au sujet: "ACT2025 - Cours 8 MATHÉMATIQUES FINANCIÈRES I Huitième cours."— Transcription de la présentation:

1 ACT Cours 8 MATHÉMATIQUES FINANCIÈRES I Huitième cours

2 ACT Cours 8 Rappel: Valeur accumulée dune annuité simple constante de fin de période

3 ACT Cours 8 Rappel: Valeur accumulée dune annuité simple constante de fin de période Annuité simple constante de début de période

4 ACT Cours 8 Rappel: Valeur accumulée dune annuité simple constante de fin de période Annuité simple constante de début de période Valeur actuelle dune annuité simple constante de début de période

5 ACT Cours 8 Rappel: Valeur accumulée dune annuité simple constante de fin de période Annuité simple constante de début de période Valeur actuelle dune annuité simple constante de début de période Valeur accumulée dune annuité simple constante de début de période

6 ACT Cours 8 Nous avons ainsi vu quatre formules: Rappel:

7 ACT Cours 8 Nous avons ainsi vu quatre formules: Rappel:

8 ACT Cours 8 Nous avons ainsi vu quatre formules: Rappel:

9 ACT Cours 8 Nous avons ainsi vu quatre formules: Rappel:

10 ACT Cours 8 Ces différentes valeurs sont représentées dans le diagramme: Rappel:

11 ACT Cours 8 Ce dernier diagramme nous permet de relier ces différentes valeurs.

12 ACT Cours 8 Nous avons les formules: Rappel:

13 ACT Cours 8 Nous avons les formules: Rappel:

14 ACT Cours 8 Nous avons les formules: Rappel:

15 ACT Cours 8 Nous avons les formules: Rappel:

16 ACT Cours 8 Il est parfois nécessaire de connaitre la valeur dune annuité à dautres moments quà t = 0 et t = n.

17 ACT Cours 8 Il est parfois nécessaire de connaitre la valeur dune annuité à dautres moments quà t = 0 et t = n. La bonne stratégie est dutiliser ce que nous avons développé jusquà maintenant pour exprimer ces valeurs.

18 ACT Cours 8 Valeur dune annuité plusieurs périodes de capitalisation avant le premier paiement de celle-ci Annuité différée:

19 ACT Cours 8 Valeur dune annuité plusieurs périodes de capitalisation avant le premier paiement de celle-ci Valeur dune annuité plusieurs périodes de capitalisation après le dernier paiement de celle-ci Annuité différée:

20 ACT Cours 8 Valeur dune annuité plusieurs périodes de capitalisation avant le premier paiement de celle-ci Valeur dune annuité plusieurs périodes de capitalisation après le dernier paiement de celle-ci Valeur dune annuité à un paiement de celle-ci Annuité différée:

21 ACT Cours 8 Déterminons la valeur actuelle dune annuité simple constante de fin de période consistant en n paiements de 1$ dont le début est différé de m périodes. Premier cas:

22 ACT Cours 8 Le diagramme dentrées et sorties de cette situation est le suivant:

23 ACT Cours 8 La valeur de cette annuité à t = 0 est donnée par la formule:

24 ACT Cours 8 Yvan Sankrédi a fait lachat dune chaine de magasins au montant de $. Il finance cet achat en faisant un prêt au même montant, prêt quil remboursera par 30 versements annuels égaux au montant de R dollars. Il commencera ces versements dans quatre ans. Le taux effectif du prêt est de 7% par année. Quel est le paiement annuel R fait par Yvan? Exemple 1:

25 ACT Cours 8 Le diagramme dentrées et sorties de cette situation est le suivant:

26 ACT Cours 8 Nous avons bien une annuité simple constante. La période de paiement est la même que la période de capitalisation de lintérêt. Le taux dintérêt est de 7% par période de capitalisation.

27 ACT Cours 8 Léquation de valeurs à la date de comparaison t = 0 est

28 ACT Cours 8 ou encore Léquation de valeurs à la date de comparaison t = 0 est

29 ACT Cours 8 Peu importe que nous utilisions la première ou la seconde équation, nous obtenons R = $

30 ACT Cours 8 Déterminons la valeur accumulée m périodes après le dernier paiement dune annuité simple constante de fin de période consistant en n paiements de 1$. Nous supposons que le montant accumulé au moment du dernier paiement est investi dans un placement rémunéré au même taux dintérêt que lannuité. Deuxième cas:

31 ACT Cours 8 Le diagramme dentrées et sorties de cette situation est le suivant:

32 ACT Cours 8 La valeur de cette annuité à t = m + n est donnée par la formule:

33 ACT Cours 8 Anastasia déposera dans un compte de banque 100$ par mois pendant 15 ans. Elle fait ces versements à la fin de chaque mois et le taux dintérêt auquel ce compte est rémunéré est le taux nominal dintérêt i (12) = 6% par année capitalisé mensuellement. Si elle compte retirer complètement le capital accumulé 4 ans après le dernier versement, quel montant retirera-t-elle? Exemple 2:

34 ACT Cours 8 Le taux dintérêt par mois est Exemple 2: (suite)

35 ACT Cours 8 Le taux dintérêt par mois est Il y aura 15 x 12 = 180 versements dans le compte de banque. Ensuite Anastasia retire son capital 4 x 12 = 48 périodes plus tard. Exemple 2: (suite)

36 ACT Cours 8 Le diagramme dentrées et sorties de cette situation est le suivant:

37 ACT Cours 8 Léquation de valeurs à la date de comparaison t = 228 périodes de capitalisation est

38 ACT Cours 8 ou encore Léquation de valeurs à la date de comparaison t = 228 périodes de capitalisation est

39 ACT Cours 8 Peu importe que nous utilisions la première ou la seconde équation, nous obtenons que le capital accumulé est X = $

40 ACT Cours 8 Barnabé emprunte 50000$ quil remboursera en faisant 32 versements trimestriels: les 8 premiers paiements sont au montant de R dollars, les 16 suivants sont au montant de 0.9R dollars et les 8 derniers au montant de (R ) dollars. Les paiements sont faits à la fin de chaque trimestre, le premier est fait trois mois après le prêt. Le taux dintérêt est le taux nominal i (4) = 8% par année capitalisé à tous les 3 mois. Déterminons R. Exemple 3:

41 ACT Cours 8 Le taux dintérêt par trimestre est Exemple 3: (suite)

42 ACT Cours 8 Le diagramme dentrées et sorties de cette situation est le suivant:

43 ACT Cours 8 Léquation de valeurs à la date de comparaison t = 0 est

44 ACT Cours 8 Nous obtenons alors que R = $. Léquation de valeurs à la date de comparaison t = 0 est

45 ACT Cours 8 Mais nous aurions aussi pu écrire cette équation de valeurs à la date de comparaison t = 0 sous la forme Nous obtenons aussi que R = $

46 ACT Cours 8 Déterminons la valeur au m e paiement dune annuité simple constante de fin de période consistant en n paiements de 1$. Troisième cas:

47 ACT Cours 8 Le diagramme dentrées et sorties de cette situation est le suivant:

48 ACT Cours 8 La valeur de cette annuité à t = m est donnée par la formule:

49 ACT Cours 8 Une annuité pour laquelle les paiements ne sarrêtent jamais est une rente perpétuelle. Les paiements sont faits à la fin de chaque période. Il est possible de calculer sa valeur actuelle. Cependant il ny a pas de valeur accumulée parce quil ny a pas de dernier paiement. Rente perpétuelle:

50 ACT Cours 8 Le diagramme dentrées et sorties de cette situation est le suivant:

51 ACT Cours 8 Nous notons la valeur actuelle de cette rente perpétuelle par Rente perpétuelle: (suite)

52 ACT Cours 8 Nous pouvons calculer la valeur actuelle de cette rente. Il est facile par des moyens élémentaires dobtenir que Rente perpétuelle: (suite)

53 ACT Cours 8 Nous pouvons interpréter la formule au moyen de rentes perpétuelles. Interprétation:

54 ACT Cours 8 Une annuité de fin de période consistant en des paiements de 1$ peut être vu comme une rente perpétuelle auquel nous soustrayons une rente perpétuelle différée de n périodes. Interprétation: (suite)


Télécharger ppt "ACT2025 - Cours 8 MATHÉMATIQUES FINANCIÈRES I Huitième cours."

Présentations similaires


Annonces Google