Objectif de la séance Aujourd'hui nous allons travailler en géométrie. Nous allons revoir les propriétés des différents triangles et nous allons apprendre.

Slides:



Advertisements
Présentations similaires
Les triangles (5) Somme des angles d’un triangle
Advertisements

CODER UNE FIGURE.
Mathématiques - Géométrie
Ce sont des figures fermées qui possèdent 3 côtés
Triangles particuliers (1)
LES TRIANGLES.
9. Des figures usuelles.
Activités Mentales Classe 6 e Test n°7. Consignes  Chaque question restera un certain temps à l’écran et tu ne devras rien écrire pendant ce temps. 
Symétrie centrale. 1. Symétrique d’une figure par rapport à un point.
Les angles du triangle Menu principal 1- Activités 2 - Leçon
Ce sont des figures fermées qui possèdent 3 côtés
Classifier et construire des triangles
Le triangle. 2 SOMMAIRE Définition Triangles particuliers Propriétés d'un triangle isocèle Propriétés d'un triangle équilatéral Construction d'un triangle.
TP sur la Mesure : De la CORDE à NOEUDS à l'utilisation du TELEMETRE
Classe de CE2 (mémoire de Florence Nicolas) Agir sur des figures planes: techniques de reproduction et d'agrandissement. Maîtriser les outils: règle, équerre,
Les hauteurs d'un triangle. Sommaire: ● Définition ● Exemple général ● Exemple dans un triangle rectangle ● Exemple dans un triangle isocèle ● Exercice.
Progressions géométrie CM
PROGRAMME DE CONSTRUCTION
LA BISSECTRICE D ’UN ANGLE
Programme de construction
Reconnaître les solides
Touches 1,2,3 pour faire apparaître les carrés sur les 3 côtés.
Connaitre les unités de mesures d’aires
Cette figure semble être formée : a) d’un carré et d’un cercle
Cm2 Ecole Saint Roch Avignon
Symétrie axiale sur papier quadrillé et uni
Objectif de la séance Aujourd'hui nous allons apprendre à reconnaître et identifier les solides. A la fin de la séance, vous saurez identifier les différentes.
Géométrie Leçon 3.
A B C Soit ABC un triangle rectangle en A. Soit I le milieu de [BC].
Division avec quotient décimal
Activités préparatoires.
Programmation Numération Compétences visées Période
Se repérer sur un quadrillage
Un programme de construction doit permettre de tracer entièrement
Périmètre et aire.
Je peux différencier les différents types de triangles.
© Hachette Livre 2016, Mathématiques Cycle 4, collection Kiwi.
Démonstration du théorème
Connaître les fractions décimales
Périmètre et aire.
Règle et Compas.
Symétrie axiale sur papier quadrillé
Objectif de la séance Aujourd'hui nous allons travailler en opération.
Règle et Compas.
Calculer des périmètres
Connaître les triangles
Multiplier des entiers par un nombre à plusieurs chiffres
Multiplier des entiers par un nombre à un chiffre
Chapitre 5 : A la règle et à l’équerre
La pensée critique en Mathématiques Module 1 Les racines carrées et le théorème de Pythagore 8e année Par Tina Noble.
Activités Mentales Classe 5e Test n°2.
Connaître et tracer des cercles
Multiplier des décimaux
Tracer et reproduire des angles
Géométrie CM Les quadrilatères.
Connaître les multiples et diviseurs d’un nombre.
Suivre un programme de construction
Comparer des fractions
La Géométrie Autrement La propriété de Thalès Thalès mathématicien grec (625 av. J.-C. 547 av. J.-C.)
Une introduction à la propriété de Thalès
Relation Pythagore#3 (Trouver la longueur de l’inconnu)
THALES ? VOUS AVEZ DIT THALES ?
Une introduction à la propriété de Thalès
La propriété de Thalès Thalès mathématicien grec (625 av. J.-C. 547 av. J.-C.)
Connaître et utiliser les triangles semblables
Géométrie : Le cercle et le triangle
Les angles et les triangles
CE1 Module 6 Séance 1-4
Mesure CM Les durées.
Surface Totale des prismes triangulaires
Transcription de la présentation:

Objectif de la séance Aujourd'hui nous allons travailler en géométrie. Nous allons revoir les propriétés des différents triangles et nous allons apprendre à les tracer. A la fin de la séance, vous saurez tracer des triangles à partir d'un programme de construction ou d'un schéma.

Vérification de la compréhension Dans quelle matière allons-nous travailler ? Quelles notions va-t-on revoir ? Que va-t-on apprendre à faire ?

C'est un triangle qui possède un angle droit. Le triangle rectangle C'est un triangle qui possède un angle droit. ABC est un triangle rectangle en A.

Vérification de la compréhension Quelle est la particularité du triangle rectangle ?

Le triangle équilatéral C'est un triangle dont les 3 côtés sont égaux. DEF est un triangle équilatéral car DE=EF=FD

Vérification de la compréhension Quelle est la particularité du triangle équilatéral ?

C'est un triangle qui possède deux côtés de même longueur. Le triangle isocèle C'est un triangle qui possède deux côtés de même longueur. OAB est un triangle isocèle car OA=OB

Vérification de la compréhension Quelle est la particularité du triangle isocèle ?

Le triangle rectangle isocèle C'est un triangle qui possède deux côtés de même longueur et un angle droit. ABC est un triangle rectangle isocèle car AB=AC et ABC rectangle en A.

Vérification de la compréhension Quelle est la particularité du triangle rectangle isocèle ?

Tracer un triangle rectangle. Pour tracer un triangle rectangle, il faut une règle, une équerre , un compas (facultatif) Tracé

Tracer un triangle équilatéral. Pour tracer un triangle équilatéral, il faut une règle et un compas Tracé

Tracer un triangle isocèle. Pour tracer un triangle isocèle, il faut une règle et un compas Tracé

Pratique guidée Trace un triangle ABC rectangle en A. Trace un triangle équilatéral DEF dont les côtés mesurent 4 cm. Trace un triangle isocèle GHI avec GH=HI=6cm et GI=4cm