Application de la Théorie des OF à la réactivité Réactivité relative - accélérer ou ralentir une réaction Régiosélectivité - orienter les réactions pour.

Slides:



Advertisements
Présentations similaires
LES FONCTIONS CARBONYLEES Amandier : fleurs et fruit
Advertisements

UN NOUVEAU DESCRIPTEUR DE LA RÉACTIVITÉ CHIMIQUE:
Module : Biochimie Structurale – Chimie Organique II
LES AMINES.
APERÇU SUR LA REACTIVITE CHIMIQUE
Outils chimiques pour létude des biomolécules 2 ème partie : Outils chimiques théorique : Modélisation Moléculaire 2) La modélisation moléculaire : application.
Les Amines.
Les aldéhydes et les cétones
Les acides carboxyliques et leurs dérivés
Acidité et Basicité.
L ADDITION ELECTROPHILE DU DIBROME SUR UN ALCENE Inspecteurs : Ph. ARNOULD - J. FURNÉMONT Formateur CAF : P. COLLETTE
Synthèses de molécules complexes
LES AMINES.
ÉQUILIBRES DE PRÉCIPITATION
Introduction au Thème 2 : La chimie de la vie
Alcène et Alcynes Réactions d’addition.
Stéréochimie et réactivité
Réactions de cycloadditions
Substitution aromatique électrophile
Introduction aux réactions organiques
LES EFFETS ELECTRONIQUES ET STERIQUES
Méthode des Orbitales de fragments uPoly: Chapitre 2 pp et uCe quon sait faire: - Interactions 2 orbitales - Hückel uCe quon veut faire: Construire.
Les acides carboxyliques
Inspecteurs : Ph. ARNOULD - J. FURNEMONT Formateur CAF : P. COLLETTE 1999 SUBSTITUTION NUCLEOPHILE NON CONCERTEE.
Chimie organique Chapitre VIII :
LIAISON COVALENTE - EFFETS ELECTRONIQUES
MIGRATIONS SIGMATROPIQUES Systèmes neutres Ions Réarrangements de Wagner-Meerwein Poly: pp
Chimie organométallique (2ème partie) Complexes ML 5, ML 3, autres géométries Effets des orbitales π des ligands Analogie isolobale Quelques cycles catalytiques.
Equilibre les Equations Chimiques:
Atomes d’hydrogène à grande distance
Les acides et les bases.
La théorie de la liaison et la géométrie moléculaire
des molécules organiques
Chimie Organique Alcènes/alcynes
Chapitre 2 Biochimie et Biosynthèse
Chimie organique Chapitre VI :
Ch 4 Analyse spectrale 1. Quelques familles chimiques et leurs groupes caractéristiques 2. Spectre UV-visible 3. Spectre infrarouge (IR) 4. Résonance magnétique.
Du macroscopique au microscopique dans les synthèses
LES ALCENES.
La fonction carbonyle.
Les systèmes conjugués
Aldéhydes et cétones a,b-insaturés
Halogénures d’alkyle et alcools
ÉQUILIBRES DE COMPLEXATION
Même nombre de carbones, alcène au départ, aldéhyde à l’arrivée, donc modification de groupe caractéristique Même nombre de carbones, alcène au départ,
MECANISMES REACTIONNELS
Sous la direction des Dr. Richard GIL et Florence HELION
Réactions aldoliques.
Métaux de transition (bloc d) :
Reactivite et orbitales frontieres.
« mécanisme réactionnel » « suivi cinétique »
SN1, le mécanisme:.
Alkylation allylique X- = -OAc Nu- = -CH(COOMe)2 B.M. Trost 1970
Les acides, les bases et 2 théories
(mélanome, cervicale et pulmonaire)
Exercices de Chimie Organique
Tout ce qu’il y a derrière un suivi cinétique
Les acides, les bases et le pH. La théorie d’Arrhénius Un acide est une substance qui se disssocie dans l’eau pour former des ions H + (aq) Ex: HCl (g)
Spectroscopie infra-rouge, introduction
n est un nombre entier positif (1,2,3,4,…..)
1 3 Rappels : Spectre électromagnétique. 2 3 Phénomènes physiques associés à chacun des domaines :
Synthèse de molécules organiques
Complexes des lanthanides
ELEMENTS DE CHIMIE ORGANIQUE
LES MECANISMES ET LE ROLE DE L’ENERGIE Niveau 3. La chimie Effets de substituants, sélectivités, spécificités Réactions Mécanismes Modes de Réactivité.
Chemtube 3D 0substitution%20at%20the%20carbonyl%20gr oup%20-%20Acetal%20formation.html
La science des substances dérivées du carbone
2 ème écurie d’UE1 Atomistique Liaisons et électronégativité Chimie organique Thermodynamique.
1 Exercices de Chimie Organique 1BACHELIER V FACULTE POLYTECHNIQUE DE MONS SERVICE DE CHIMIE et BIOCHIMIE APPLIQUEES.
Chap. 5 : Les cycles à 6 - thermodynamique très favorable (mieux qu’à 5) cinétique correcte (moins qu’à 5) # Chimie des composés carbonylés # Réduction.
Transcription de la présentation:

Application de la Théorie des OF à la réactivité Réactivité relative - accélérer ou ralentir une réaction Régiosélectivité - orienter les réactions pour favoriser le produit voulu Domaine dapplication: - Réactions ioniques - Cycloadditions Cadre: Théorie des perturbations, complétée Poly : pp et

Théorie des perturbations. Interactions à 3 orbitales R Exemple: effets de substituants sur un éthylène Schéma général: L M N E m ° P m = 0 P n P mn E ° E n ° 1. Energies p. 121

Energie de N après perturbation: Les perturbations de M et L sur N se cumulent L M N E m ° P m = 0 P n P mn E ° E n ° p. 121

Energie de M ou L après perturbation: L M N E m ° P m = 0 P n P mn E ° E n ° Lénergie de L nest perturbée que par N On est ramené à linteraction à 2 orbitales p. 121

Effet dun substituant donneur sur un substrat: Schéma général: Un donneur est symbolisé par une orbitale doublement occupée Un donneur relève beaucoup la HO, un peu la BV. => Favorise une attaque E + Ex: R, OH, OR, NH 2, NR 2 … Exemple: p. 142

Effet dun substituant accepteur sur un substrat: A Un accepteur est symbolisé par une orbitale vacante Un accepteur abaisse beaucoup la BV, un peu la HO => favorise une attaque Nu – Ex: CN,,, NO 2, … Schéma général: p. 143

Efficacités comparées de substituants donneurs: Classement: NH 2 > OH > CH 3 NH 2 BV HO OH BV HO CH 3 BV HO (N:) = ß (C-N:) = 0.8 ß (O:) = + 2 ß (C-O:) = 0.8 ß (Me) = + 2 ß (C-N:) = 0.7 ß + ß - ß Mais aussi: NR 2 > NHR > NH 2 OR > OH, etc.

Application: réactivité du carbonyle vis-à-vis dune attaque nucléophile Explication: effets de substituants sur les OF du carbonyle

C H H O OC H H p x n p CO CO CO p O sp O C H H p O O p y e CO BV = * CO HO = paire libre p O de loxygène Orbitales moléculaires du groupe carbonyle C y O A B x z p. 145

Attaque nucléophile du carbonyle selon la Théorie des OF CO * (BV de RCHO) Haute BV carbonyle peu réactif Bon donneur haute BV HO deNu –

Réactivité du carbonyle (pour une attaque Nu – ): prédictions de la Théorie des OF O ( Me ( Cl ( N ( aldéhyde RCHO chlorure d'acide RCOCl cétone R 2 CO ester RCOOR amide RCONH 2 CO * (BV de RCHO) Haute BV faible réactivité Ordre théorique: RCONR 2 < RCONH 2 < RCOOR < R 2 CO < RCOCl RCHO Ordre expérimental: RCONR 2 < RCONH 2 < RCOOR < R 2 CO < RCHO RCOCl p. 147

Application: assistance électrophile C O M + Carbonyle complexé M + = H +, Na +, Li +, etc.… La complexation (ou conditions acides) active la réactivité de C=O vis-à-vis dun nucléophile La BV du carbonyle complexée est abaissée p. 146

Application aux cycloadditions Exemple: Diels-Alder Règle dAlder: On accélère la réaction si le diène est « enrichi » et le diénophile « appauvri ». p. 149

Justification de la règle dAlder A D D A Une interaction HO-BV devient prépondérante Le gain dénergie est supérieur à la perte p. 150

A D D A A D D A Règle d'Alder normale Règle d'Alder inverse Diène riche Diénophile pauvre Diène pauvre Diénophile riche (moins fréquent) Pourquoi la règle dAlder et pas son inverse? Règle dAlder: p. 150

Raison: Les diénophiles pauvres sont plus courants que les diènes pauvres Meilleurs diénophiles pauvres: Ethylène Tétracyanoéthylène Anhydride maléique

Application de la Théorie des OF à la réactivité Réactivité relative - accélérer ou ralentir une réaction Régiosélectivité - orienter les réactions pour favoriser le produit voulu Entre 2 sites possibles, quel est le + réactif? Importance des coefficients des OF sur ces sites

Théorie des perturbations. Interactions à 3 orbitales R Exemple: effets de substituants sur un éthylène Schéma général: L M N E m ° P m = 0 P n P mn E ° E n ° 2. Coefficients des Orbitales p. 121

L M N E m ° P m = 0 P n P mn E ° E n ° n ° m ° ° n Expression de n après perturbation: Les perturbations de M et L sur N se cumulent (comme pour les énergies) p. 121

L M N E m ° P m = 0 P n P mn E ° E n ° ° m ° n ° est perturbée au 1 er ordre par N, et au 2 ème ordre par M Expression de après perturbation: p. 121

= ° + P n E ° - E n ° + n ° m ° P n E ° - E n °E ° -E m ° P mn = ° + P n E ° - E n ° + n ° E ° -E m ° H m ° prov prov m ° ° m ° n ° prov 2. Le résultat prov interagit avec m ° Procédure en 2 étapes: ° interagit avec n ° prov

= ° + P n E ° - E n ° + n ° m ° P n E ° - E n °E ° -E m ° P mn = ° + P n E ° - E n ° + n ° E ° -E m ° H m ° prov m ° ° m ° n ° prov 2. Le résultat prov interagit avec m ° Avantage: se prête bien au traitement graphique Procédure en 2 étapes:

Application: effet dun substituant Méthyle sur la HO de léthylène Me * prov * prov HO Attention! Dessiner et prov se recouvrant en phase 2. Coefficients de la HO 1 ère étape: 2 ème étape: HO 1. Energie de la HO: relevée (déjà vu) S>0 Plus gros coefficient p. 125 p. 126

Applications: règle de Markownikov La protonation dun alcène se fait sur son carbone le moins substitué attaque électrophile de lion énolate Bien que moins chargé négativement que loxygène, cest le carbone qui est attaqué par E + Exemple; aldolisation p. 160

Exceptions: O-alkylation vs C-alkylation C-alkylation O-alkylation E Electrophile à haute BV => O-alkylation p. 161

Additions « conjuguées » ou « de Michael » Additions 1,2 : Additions 1,4 (Michael) : Les 2 attaques sont équipropables: BV du propénal: Expérience:Cest selon! p. 164

Cycloadditions asymétriques O O 1 part2,6 parts CO 2 Me + CO 2 Me CO 2 Me + O O + Exemples: Application de la Théorie des OF: - Lattaque est asymétrique - La 1 ère attaque détermine le produit - Chercher la 1 ère attaque (4 possibilités) par un calcul de perturbations A B C D A B D C p. 154

Exemple: CO 2 Me MeO + Orbitales frontières: p. 155

Approche 1-1 : CO 2 MeO MeO – 0.65 – CO 2 Stabilisation 1-1 : 4-1 : 4-2 : 1-2 : p. 155

Approche la plus rapide : Expérimentalement :

En pratique, raisonnement simplifié : Repérer linteraction HO-BV prépondérante (plus petit écart énergétique) et négliger lautre p. 155

En pratique, raisonnement simplifié : MeO – CO 2 Repérer les gros coefficients Règle: les gros coefficients sattirentProduit prédit: Savoir prédire (qualitativement) les effets de substituants sur les OM des substrats

Effets de substituant sur les OF dun butadiène : Donneur en position 1. Effet sur la HO: D BV D Plus gros coefficient en 4 Sur la HO D S>0 Effet sur la BV:linverse de leffet sur la HO (plus gros coefficient en 1) p

Effets de substituant sur les OF dun butadiène : Donneur en position 2. Effet sur la HO: D BV HO D Plus gros coefficient en 1 D S>0 Effet dun Attracteur: linverse de celui dun donneur p

Moyen mnémotechnique (Coeffs en 1 et 4 dun diène): Un donneur en 1 envoie des électrons en 4: La HO se concentre en 4, la BV sy dégarnit Un attracteur en 1 soutire des électrons à 4: La HO se dégarnit en 4, la BV sy concentre Un donneur en 2 concentre la HO et dégarnit la BV en 1 Un attracteur a leffet inverse

Un donneur en 1 concentre la HO et dégarnit la BV en 2 Un attracteur a leffet inverse Moyen mnémotechnique (Coeffs dun diénophile): HO (NH 2 CHCH 2 ) 1 2 BV (NH 2 CHCH 2 ) 1 2

Moyen mnémotechnique: (Coeffs en 1 et 4 dun diène, ou 1 et 2 dun diène): HO D D A A BV HO BV Un accepteur crée une charge au maximum de la BV Un donneur crée une charge au maximum de la HO

Retour sur: CO 2 Me MeO + 1. Un donneur remonte les OF, un attracteur les abaisse

Retour sur: CO 2 Me MeO + D A 2' 1' 1 4 Un donneur en 2 Concentre la HO en 1 Un attracteur en 1 Concentre la BV en 2

Stéréochimie endo-exo dans les cycloadditions Diels-Alder Orientation « exo » Orientation « endo » Expérimentalement: endo p. 175

Interactions frontalières: BV HO BV Endo: Interactions Secondaires favorables Exo: Pas dinteractions secondaires Interactions primaires favorables dans les 2 cas p. 176

Stéréochimie endo-exo dans les cycloadditions Cycloadditions 4s + 6s ? Ph O + HO BV HO Interactions frontalières Interactions secondaires répulsives => exo favorisé Produit : Ph O p. 176