La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

DOMINO Comment ranger les dominos ?. N OTRE ÉNONCÉ Dans une zone plane, rectangulaire, telle que sa longueur et sa largeur soient des nombres entiers.

Présentations similaires


Présentation au sujet: "DOMINO Comment ranger les dominos ?. N OTRE ÉNONCÉ Dans une zone plane, rectangulaire, telle que sa longueur et sa largeur soient des nombres entiers."— Transcription de la présentation:

1 DOMINO Comment ranger les dominos ?

2 N OTRE ÉNONCÉ Dans une zone plane, rectangulaire, telle que sa longueur et sa largeur soient des nombres entiers vous voulez ranger des dominos (formés de deux carrés de même dimension)

3 N OTRE PREMIÈRE QUESTION EST : Peut-on toujours recouvrir entièrement toute la zone ?

4 N OTRE PREMIER TABLEAU Dans ce tableau, la longueur est de 7 unités et la largeur est de 3 unités. Mais ici le rectangle nest pas rempli entièrement, car la longueur et la largeur sont deux nombres impairs.

5 L ET S CONTINUE Dans ce tableau, la longueur est de 4 unités et la largeur est de 6 unités. Ici on a tout le rectangle rempli. Mais ici on a la longueur et la largeur qui sont 2 nombres paires.

6 E T MAINTENANT !!! Dans ce tableau, la largeur est de 4 unités et la longueur est de 7 unités. Par suite tout le rectangle est rempli. Or on a mis un nombre pair et un nombre impair.

7 N OS RÈGLES Si la mesure des longueurs et largeurs sont des nombres pairs le rectangle est recouvert. Si la mesure des longueurs et largeurs sont des nombres impairs le rectangle nest pas entièrement recouvert. Si une dimension est un nombre impair et lautre pair le rectangle est entièrement recouvert.

8 N OTRE DEUXIÈME QUESTION EST : Si la zone peut être recouverte, alors combien de façons différentes existe- t-il?

9 LES DIFFÉRENTES FAÇONS On a trouvé quil y a plusieurs façons pour remplir le tableau avec une même dimension (largeurs ou longueurs) On a commencé avec des petits nombres et puis on a petit à petit commencé à travailler avec des grands nombres.

10 A VEC 2 ET 2 UNITÉS

11 A VEC 2 ET 3 UNITÉS

12 A VEC 2 ET 4 UNITÉS

13 A VEC 2 ET 5 UNITÉS ETC…

14 E N FIN DE COMPTE On peut dire que : 2 et 2 2 façons 2 et 3 3 façons +1 2 et 4 5 façons +2 2 et 5 8 façons +3 2 et 6 12 façons +4 2 et 7 17 façons +5 OUPS !!!!!!!

15 D E PLUS PRES somme des entiers jusqua (longueur -2 ) Pour une longueur qui est égale à 7 notre conjecture ne marchera plus.

16 A VEC 1 ET 8 On a pas dautre façons pour remplir le rectangle car la largeur est 1 unité.De même pour la longueur.

17 A VEC 6-1 On a pas dautre façons pour remplir le rectangle car la longueur est 1 unité. De même pour la largeur.

18 C OMME CONCLUSION Quand on naugmente la longueur et la largeur on aura plusieurs façons à placer les dominos dans lespace quon a. Lorsque la largeur est plus que 1 unité on pourra remplir le rectangle et on aura plusieurs façons pour placer les dominos. De même pour la longueur. Si un rectangle nest pas rempli de la première façon donc toutes les autres façons ne vont pas marcher.

19 V OICI PLUSIEURS FAÇONS ( AVEC DES PETITS NOMBRES ) 4 et 5 unités 4 et 4 unités

20 V OICI PLUSIEURS D AUTRES FAÇONS ( AVEC DES GRANDS NOMBRES ) 7 et 10 unités

21 En fin de compte, quand on a un rectangle rempli, on pourra avoir plusieurs autres façons. À condition que la largeur et la longueur soient un nombre pair et lautre impair, deux nombres pairs ou plus que 1 unité. Et comme ça, on aura un rectangle rempli avec plusieurs façons.

22 Presenter par : Lynn Berjaoui Et Nadine Daouk


Télécharger ppt "DOMINO Comment ranger les dominos ?. N OTRE ÉNONCÉ Dans une zone plane, rectangulaire, telle que sa longueur et sa largeur soient des nombres entiers."

Présentations similaires


Annonces Google