La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Gestion de portefeuille Chapitre 6: Portefeuille efficient au sens de Markovitz.

Présentations similaires


Présentation au sujet: "Gestion de portefeuille Chapitre 6: Portefeuille efficient au sens de Markovitz."— Transcription de la présentation:

1 Gestion de portefeuille Chapitre 6: Portefeuille efficient au sens de Markovitz

2 Etude de lefficacité ou efficience de Markovitz Définition: Un portefeuille est efficient au sens de Markovitz sil permet datteindre un niveau de rendement anticipé fixé avec le minimum de risque (cest-à-dire le minimum de variance). Ou, de manière équivalente, si, pour un niveau de risque donné, il permet datteindre le maximum de rendement moyen (espéré)

3 Il faut distinguer le choix dun portefeuille efficient purement risqué et le choix dun portefeuille efficient comportant un titre non risqué. I. C hoix dun portefeuille purement risqué efficient On cherche la combinaison optimale de n titres risqués permettant datteindre un niveau maximal de rendement espéré pour un niveau de variance du rendement donné

4 Ecriture du programme doptimisation

5 Résultat de loptimisation On peut montrer que la solution de ce problème peut être représentée graphiquement par une parabole dans l'espace risque(écart-type) – rendement espéré. La partie inférieure de la courbe représente des opportunités d'investissements qui ne sont pas intéressantes puisqu'il existe des opportunités d'investissement sur la partie supérieure qui offrent un rendement supérieur pour ce même niveau de risque. La partie supérieure de cette parabole est appelée la frontière efficiente et représente l'ensemble des portefeuilles qui, pour un niveau donné du risque procurent un rendement espéré maximal. Voir figures du site la bourse pour les nains

6 II. Recherche dun portefeuille efficient au sens de Markovitz en présence dun titre sans risque II.1 Optimisation sous contrainte: maximisation dun lagrangien avec prise en compte du coût de la contrainte

7 Pour obtenir lexpression précédente du critère maximisé, on remarque que le rendement espéré du portefeuille de composition sécrit:

8 Remarque: il existe une autre formulation du problème de recherche dun portefeuille efficient On peut minimiser le risque (la variance) du rendement du portefeuille pour un niveau de rendement espéré fixé:

9 On montre que les deux formulations conduisent au même ensemble de solutions ( cest-à-dire à la même frontière efficiente) Les Lagrangiens associés sécrivent: 1) pour la maximisation du rendement espéré sous contrainte de niveau de risque donné: 2) pour la minimisation de la variance du rendement sous contrainte de niveau de du rendement espéré donné:

10 Les deux Lagrangiens se déduisent en effet lun de lautre:

11 II.2 Composition de la part purement risquée du portefeuille global efficient On établit le résultat suivant, la composition optimale a pour expression:

12 Comment trouver le w optimal? 1°) cas où n=2 On se place dans le cas particulier où il existe deux titres (n=2). Dans ce cas, on doit résoudre:

13 En effet, on a un système de deux équations à deux inconnues qui peut sécrire sous la forme matricielle suivante:

14 2) Cas général ( n quelconque) Dérivation matricielle de loptimum On écrit Et le critère à maximiser sous la forme: La condition du premier ordre sécrit alors:

15 Application des formules de dérivation matricielle avec Var(R) matrice symétrique

16 Rappel: La matrice Var(R) est la matrice nxn des variances-covariances du vecteur des rendements

17 II.3 Lien entre le paramètre λ et laversion au risque

18 Remarques 1).Plus V 0 est faible ( cest-à-dire le niveau de risque accepté) plus est fort ( mesure bien laversion au risque. 2). Pour un ensemble donné de n titres risqués et un titre sans risque, tout agent qui choisit un portefeuille efficient partage sa richesse entre deux « fonds de placement »: - le titre sans risque ( bonds du trésor) - un portefeuille purement risqué dont la composition est donnée par: La part relative dépend de laversion au risque

19 On définit la performance de Sharpe des n titres risqués en présence dun titre sans risque par: Dans le cas où on a un seul titre risqué de rendement R 1, de prime de risque et de volatilité sa performance de Sharpe est définie par

20 III. Résultat de loptimisation: le lieu des portefeuilles efficients au sens de Markovitz – la frontière efficiente- est une demi- droite dans le plan La composition du portefeuille efficient P est donnée par: Son rendement espéré est donc donné par: Par ailleurs, sa variance est égale à:

21 dans le plan (écart-type, rendement espéré) lensemble des portefeuilles efficients (comportant le titre sans risque) est une demi- droite

22 IV. Récapitulation 1) Pour trouver un portefeuille efficient comportant une part non risquée, il faut partager sa richesse entre deux fonds de placements: –le portefeuille purement risqué efficient défini par la caractérisation optimale w* trouvée précédemment, à un facteur multiplicatif près –Le titre sans risque La part relative de ces deux fonds dépend de laversion au risque Le lieu des portefeuilles efficients comportant un titre sans risque est une1/2 droite dans le plan (écart-type, rendement espéré)

23 Récapitulation (suite) 2) Le portefeuille efficient purement risqué est déterminé –par les caractéristiques des rendements des n titres disponibles, qui sont les mêmes pour tout le monde (vecteur de rendements espéré ER et matrice de variance-covariance Var(R) du vecteur des rendements R) –par le coefficient qui est lié à laversion au risque et plus précisément au niveau de variance propre à lagent qui choisit la composition de son portefeuilleV 0 Le lieu des portefeuilles purement risqués efficients est une (½) parabole dans le plan (écart-type(volatilité, rendement espéré) tangente à la droite des portefeuilles globaux efficients

24 III. Résultat de loptimisation portant sur des portefeuilles purement risqués On admet le résultat suivant: « dans le plan (écart-type, rendement espéré) le lieu des portefeuilles purement risqués – la frontière efficiente purement risquée- est une (demie) parabole tangente à la demi-droite précédente » De plus, dans ce même plan, la ½ droite des portefeuilles efficients ( comportant un titre sans risque) est tangente à la ½ parabole qui représente le lieu des portefeuilles purement risqués efficients

25 Ce qui se résume par la figure suivante

26 Le portefeuille composé de l'actif sans risque et du portefeuille d'actifs risqués K se situe quelque part sur la ½ droite [rf K[. il est clair que l'investisseur trouvera des choix d'investissement plus intéressants (qui offrent un niveau de rendement espéré plus élevé pour ce même niveau de risque) en combinant l'actif sans risque avec un portefeuille se situant un peu plus haut que K. Linvestisseur continue à faire ce raisonnement jusqu'à ce qu'il atteigne le point M qui représente le point de tangence entre la droite ayant comme ordonnée à l'origine rf et l'ancienne frontière efficiente. La composition du portefeuille d'actifs risqués M ne dépend pas des préférences des individus et tout le monde cherchera à détenir ce portefeuille. Ce portefeuille est composé a priori de tous les titres échangés sur le marché et c'est pour cette raison qu'on l'appelle le portefeuille de marché. Toutefois, les proportions investies dans le portefeuille M et dans l'actif sans risque vont varier selon le degré d'aversion au risque de l'investisseur: il s'agit de la séparation en deux fonds.


Télécharger ppt "Gestion de portefeuille Chapitre 6: Portefeuille efficient au sens de Markovitz."

Présentations similaires


Annonces Google