La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Épreuve pratique de mathématiques du baccalauréat S Présentation générale de lépreuve.

Présentations similaires


Présentation au sujet: "Épreuve pratique de mathématiques du baccalauréat S Présentation générale de lépreuve."— Transcription de la présentation:

1 Épreuve pratique de mathématiques du baccalauréat S Présentation générale de lépreuve

2 Le baccalauréat scientifique en France Examen terminal du lycée (18 ans) et premier grade dentrée à luniversité Série scientifique : environ candidats qui composent le même jour sur la même épreuve

3 Epreuve pratique de mathématiques Lépreuve pratique sinscrit dans un projet dévolution du baccalauréat scientifique. A partir du BAC 2009, lépreuve écrite de mathématiques serait complétée par une épreuve pratique.

4 Epreuve pratique : objectifs Evaluer les capacités du candidat à résoudre un exercice de mathématiques en utilisant : une calculatrice scientifique des logiciels : tableur, grapheur, géométrie dynamique, calcul formel

5 Épreuve pratique : Quels types de sujets ? Exercices mathématiques où lutilisation des outils informatiques intervient de manière significative dans la résolution du problème posé.

6 Épreuve pratique : Banque de sujets Une banque de sujets est élaborée au niveau national. Depuis le début de lannée scolaire : possibilité de consulter les sujets de lannée précédente et des descriptifs des sujets à paraître Au début du 3 ième trimestre envoi dans les établissements des 25 sujets retenus au niveau national

7 Épreuve pratique : composition dun sujet « fiche élève » : donne lénoncé et précise ce qui est attendu du candidat « fiche professeur » : décrivant les intentions de lauteur, les considérations sur lenvironnement des TICE et des commentaires sur lévaluation « fiche dévaluation » : propre à chaque sujet destinée à figurer dans le dossier du candidat Exemple de sujet en 2007

8 Expérimentation en Lexpérimentation concerne toutes les académies Lépreuve se déroule au sein de létablissement fréquenté par les élèves Passation de lépreuve fin mai – début juin Dans chaque établissement choix dune dizaine de sujets parmi les 25 reçus

9 Epreuve expérimentale : passation Lépreuve expérimentale dure une heure. Elle est individuelle mais le même exercice est donné simultanément à quatre élèves. Un professeur supervise chaque groupe de quatre élèves et évalue le travail de chacun pendant et à lissue de lexercice.

10 Exemple de disposition pratique

11 Durant lépreuve Les sujets mentionnent explicitement 1 ou 2 appels de lexaminateur permettant dévaluer le travail de lélève en cours dépreuve Lépreuve se termine généralement par une démonstration rédigée à lécrit

12 Prise en compte de lépreuve Lépreuve pratique comptera pour un cinquième dans la note globale de lépreuve de mathématiques au baccalauréat S ( après prise en compte dans la réglementation de lexamen) Ne compte pas à lexamen pendant la phase expérimentale

13 Épreuve pratique de mathématiques du baccalauréat S Exemple 1 : Expression complexe des transformations usuelles

14 Cadre Exercice proposé à ma classe de terminale S pour introduire lécriture complexe dune transformation non connue par les élèves Objectifs Découvrir le lien entre les transformations et leur écriture complexe Se servir des TICE pour visualiser les transformations

15 Principe de lexercice dans un repère du plan, par exemple : f est la transformation du plan qui transforme M(z) en M(z) tel que z = a z + b a et b étant deux complexes donnés en fonction de la transformation que lon faire découvrir à lélève Placer des points dont laffixe est donnée Obtenir les images de ces points par f Lélève doit ensuite découvrir quelle est la transformation qui permet de passer dun point quelconque M à son image M

16 Sur Géoplan logiciel géométrique : lélève doit dabord considérer les points à laide de leurs coordonnées : Si f est la transformation du plan qui transforme M(x,y) en M(x,y) tel que x + i y = a( x + i y) + b Il faut écrire x et y en fonction de x et y

17 Sur Géoplan Par exemple: Si on veut faire découvrir une rotation de centre O et dangle /2 à lélève On donne : f la transformation du plan qui transforme M(z) en M(z) tel que z =i z Alors f transforme M(x,y) en M(x,y) tel que x = -y et y= x

18 Figure obtenue avec Géoplan Fonctions à deux variables pour calculer x et y en fonction de x et y qui changent avec les transformations Points images Points dont les affixes sont données

19 Sur TI-nspire Possibilité de mettre en lien plusieurs applications dans le même classeur : On va utiliser : Le tableur pour entrer les affixes des points, calculer les affixes des points images puis déduire les coordonnées de tous les points Le grapheur pour obtenir les nuages de points Une page de calculs pour entrer la définition complexe de la transformation

20 Classeur créé sur TI-nspire Dans un premier temps visualisation de la rotation de centre O et dangle /2 Puis visualisation dautres transformations Classeur transformations

21 Lien entre lactivité et la préparation à lépreuve pratique descriptifs de deux sujets donnés dans la banque de données Descriptif 016 Descriptif 051

22 Épreuve pratique de mathématiques du baccalauréat S Exemple 2 : Étude dun lieu de points

23 Cadre Exercice proposé à ma classe de terminale S pour apprendre à conjecturer un lieu de points et démontrer ensuite la conjecture Objectifs Savoir se servir de la TI-nspire pour construire une figure permettant dobtenir la trace du lieu de points.

24 Énoncé

25 Indications données pour la construction de la figure On se ouvre lapplication : « graphique et géométrie » et on se place dans le plan géométrique. Pour construire le triangle rectangle isocèle et le carré dont on connaît une diagonale, je demande aux élèves de saider de rotation dangle /2

26 Étapes de construction Le temps de construction par élève a varié de 20 à 30 minutes sur lunité nomade Construction sur TI-nspire

27 On voit rapidement que R est fixe et que S se déplace sur une droite. Pour établir ces résultats on décide dutiliser les complexes. Étapes de la démonstration

28 Lien entre lactivité et la préparation à lépreuve pratique descriptifs de deux sujets donnés dans la banque de données Descriptif 005 Descriptif 070


Télécharger ppt "Épreuve pratique de mathématiques du baccalauréat S Présentation générale de lépreuve."

Présentations similaires


Annonces Google