La présentation est en train de télécharger. S'il vous plaît, attendez

La présentation est en train de télécharger. S'il vous plaît, attendez

Les fractions Pourquoi une présentation sur les fractions? Répondez à la question suivante: Quest-ce que je fais quand je vois une fraction? A) Je panique.

Présentations similaires


Présentation au sujet: "Les fractions Pourquoi une présentation sur les fractions? Répondez à la question suivante: Quest-ce que je fais quand je vois une fraction? A) Je panique."— Transcription de la présentation:

1

2 Les fractions

3 Pourquoi une présentation sur les fractions? Répondez à la question suivante: Quest-ce que je fais quand je vois une fraction? A) Je panique B) Je demande le prof C) Je ne fais pas le problème D) Faudrait bien que je fasse quelque chose Si vous avez répondu a), b), c) ou d) à cette question, vous trouverez sûrement un intérêt à cette présentation. Et oui, je vais opérer en direct.

4 1e (C est quoi opérer) Cest sûr, cest sûr cest sûr que tous connaissent les 4 opérations + - X Mais lhistoire ne dit pas cest quoi opérer???

5 2e (Les quatre opérations sur les fractions ) Maintenant que l on peut faire la différence entre les 4 opérations, essayons dopérer les fractions ordinaires. Youppi on va pouvoir opérer!

6 Petite révision Les fractions sont toutes composées d un numérateur, qui représente le nombre de partie que l on a choisi et d un dénominateur qui représente le nombre de partie totale de mon unité appelé aussi le tout. 5656

7 Addition et soustraction de fractions Dans la définition de l addition, on insistait sur le fait que pour additionner des nombres, on devait avoir des nombres de: même nature. On peut donc imaginer que pour additionner des fractions, nous aurons besoin quelles soient de même nature. On peut donc additionner des quarts avec des quarts, des tiers avec des tiers.... Si on veut alors additionner des quarts avec des tiers on va avoir besoin d un » » » » »

8 Dénominateur commun MÉTHODES: Il y a plusieurs méthodes pour trouver le dénominateur commun. Il s agit d en adopter une que l on comprend bien. Voici une courte description de trois souvent employées.

9 Dénominateur commun MÉTHODE 1: 1e: La méthode la plus rapide, demande une bonne connaissance des tables de multiplications, il faut trouver mentalement le PPCM (plus petit commun multiple) de nos nombres. Ex: Le ppcm de 8 et 12 c est 24.

10 Dénominateur commun MÉTHODE 2: 8 = 2 x 2 x 2 12= 2 x 2 x 3 2 X 2 X 2 X 3 = 24 2e: La décomposition en facteurs premiers permet aussi d arriver au PPCM, cest une façon plus lente, mais très efficace pour les problèmes plus difficiles.

11 Dénominateur commun MÉTHODE 3: 12 x 2 = 24, 8 x 3 = 24, 24 est le dénominateur commun 3e: Trouver le PPCM en multipliant les nombres par tous les naturels (1,2,3,4,5,6,....) en commençant par le plus gros jusquà ce que l on rencontre un multiple de tous les nombres.

12 Fractions équivalentes Une fois que lon a obtenu notre dénominateur commun on doit transformer chacune des fractions en fractions équivalentes, avant dadditionner ou de soustraire le numérateur. Wo! Cest quoi ce charabia de prof, ça fait longtemps que je sais additionner des fractions et je n ai jamais fais ça, elle veut me mêler cest sûr. Ma façon: Moi pour additionner des fractions, je trouve le dénominateur commun que je divise par le chiffre du bas et je multiplie ma réponse par le chiffre du haut, cest bien plus simple.

13 Exemples daddition de fractions On regarde si on obtient le même résultat avec les deux méthodes = 3 4 Transformons chaque fraction en fraction équivalente dont le dénominateur est 12 2 = 8 et 3 = x 4 x = NOTE: pour soustraire on fait la même chose, mais on soustrait les numérateurs.

14 Exercices Les fractions Effectuer les calculs suivants (prenez une feuille et un crayon): -3/4 + 9/4 = ? -4/5 - 5/3 = ? 9/11 + 4/3 = ? -7/8 + 2/3 = ?

15 Corrigé -3/4 + 9/4 = 6/4 = 3/2 -4/5 - 5/3 = -37/15 ou -2 7 / 15 9/11 + 4/3 = 71/33 ou 2 5 / 33 -7/8 + 2/3 = -5/24 Les fractions

16 Multiplication et division de fractions Si on revient à la définition des opérations, on devrait encore se rappeler que la multiplication et la division n ont pas besoin davoir des nombres de même nature, on aura donc pas à les transformer en fractions équivalentes. Donc pas besoin de: Dénominateur commun Pour multiplier des fractions, il est préférable de simplifier auparavant si cest possible, par la suite on ne fait que multiplier ensemble les numérateurs et multiplier ensemble les dénominateurs. Pour diviser, étant donner que cest lopération inverse de la multiplication, on inverse la 2e fraction et on procède comme une multiplication.

17 Exemples de multiplications et de division de fractions 2 x 3 = = 3 4 On inverse la 2e fraction MULTIPLICATIONDIVISION 2 x 3 = x 1 = OU 2 x 3 = 6 = x 4 = x 4 = Et on procède comme une multiplication.

18 Exercices Les fractions Effectuer les opérations suivantes:(prenez une feuille et un crayon): 5/7 x 14/3 = ? 7/4 x 6/7 = ? 9/7 ÷ 5/3 = ? 5/12 ÷ 10/3 = ?

19 Les fractions Corrigé 5/7 x 14/3 = 10/3 ou 3 1 / 3 7/4 x 6/7 = 3/2 ou 1 1 / 2 9/7 ÷ 5/3 = 27/35 5/12 ÷ 10/3 = 1/8

20 FIN Wow là! Je nai pas eu de morceau de gâteau!!!! Je veux la plus grande partie! Nessaies pas de me berner, je connais mes fractions!


Télécharger ppt "Les fractions Pourquoi une présentation sur les fractions? Répondez à la question suivante: Quest-ce que je fais quand je vois une fraction? A) Je panique."

Présentations similaires


Annonces Google